23 September 2024

14. How does extended classical mechanics predict the behavior of galaxy clusters and super clusters?


Extended classical mechanics can predict the behaviour of galaxy clusters and super clusters by focusing on the interactions of mass and energy within these large-scale structures. Here’s how the framework might approach this:

Mass Distribution and Dynamics:

The extended classical mechanics framework emphasizes the role of ordinary and dark matter in determining the dynamics of galaxy clusters. By considering the contributions of both types of mass, the framework can model gravitational interactions that govern cluster formation and evolution.

Effective Mass Concept:

The introduction of effective mass, including negative effective mass (apparent mass), allows for a more nuanced understanding of the forces at play in galaxy clusters. This can account for the observed discrepancies in mass calculations, particularly in regions where dark matter is thought to dominate.

Gravitational Interactions:

The framework would analyse gravitational interactions among cluster members and how these interactions lead to the clustering of galaxies. The impact of dark energy and its influence on the expansion of the universe can also be incorporated to assess how clusters evolve over time.

Cosmic Structure Formation:

By examining perturbations in the mass-energy distribution, extended classical mechanics can predict the formation and growth of super clusters. The interplay between gravitational forces and kinetic energy contributes to understanding how large-scale structures emerge and evolve in the universe.

Observable Phenomena:

Predictions about galaxy cluster behaviour, such as their movement, collisions, and the formation of larger structures, can be linked to observable phenomena. This includes studying the distribution of galaxies within clusters, the dynamics of cluster mergers, and the impact of cosmic background radiation.

In summary, extended classical mechanics provides a framework to model the intricate gravitational dynamics and mass-energy interactions that define galaxy clusters and super clusters, offering insights into their formation, evolution, and relationship to the larger cosmos.

[Return to Main Page]

No comments: