26 June 2023

What happens when light intersects other light?

In answer I say that light is a bunch of photons and each photon has approximately the same frequency. So when light beams converge to collide with each other, the oscillations of the colliding photons will be immediately amplified but at about the same time the amplified oscillations of the photons will revert back to their previous state.

Photons will move in the direction of their motion with almost no energy expenditure. Almost no energy expenditure is possible because photons have no rest mass and therefore no reverse reaction to their collisions according to Newton's third law.

This explanation applies not only to light but also to any electromagnetic wave.

Note: Photons maintain their energy and momentum during their propagation and interactions. When two light beams converge and their photons collide, the resulting interaction can lead to the phenomena of interference. Interference occurs when the waves align constructively or destructively, resulting in amplification or cancellation of the wave amplitudes, respectively. This behavior is a characteristic of wave phenomena, including light.

The Doppler effect is the consequence of the only exception is when photon leaves gravitational well from its source.

#intersectinglight

The Clock and Time:

[Author ORCID: 0000-0003-1871-7803]

1. Clocks are designed to measure and display the passage of time in various formats.

2. The time shown on a clock can be affected by relativistic effect.

3. The phenomenon of time appearing to run differently for observers in different relative motion or in the presence of strong gravitational fields is known as time distortion.

4. A clock is a device or instrument that is designed to measure and display the passage of time.

5. A Clock shows time based on the instructions or mechanisms they are designed to follow.

6. The relativistic effects directly affect clocks.

7. In physics, time is typically treated as an independent parameter, as a fundamental dimension in which events occur. It is considered a fundamental aspect of the universe. In this sense, time itself is not subject to direct influence or change.

8. If the relativistic effects directly affect a clock, the state of time as measured by that clock would differ from the state of time as measured by an unaffected clock.

9. The clocks show time based on the instructions or mechanisms they are designed to follow. The instructions or mechanisms of clocks are not the definition of time itself, but rather they are designed to measure the passage of time in a consistent and reliable manner. Therefore, the relativistic effects cannot affect time directly since, the instructions or mechanisms of clocks are not the definition of time itself.


#clock #time