20 October 2023

Balancing Abstraction and Empirical Evidence in Physics: A Response to Unconventional Concepts.

Dear Dr. Seyed kazem Mousavi ,
I appreciate your engagement in a lively discussion about the direction of physics. It is undeniable that physics, as the study of the physical world, should ideally retain its roots in physical, intuitive concepts. There is an ongoing debate in the scientific community about the balance between abstract mathematics and physical reality, a debate that has been a concern for decades.
The emphasis on the transition from physical reality to abstract mathematics in fundamental physics is significant and quite popular. An example of this concern is relative time dilation. The distinction between "real" or "natural" time and abstract time is an intriguing one.
The concerns you raise about the acceptance of abstract concepts such as virtual particles, interaction exchange theory, probability waves and black holes, are shared by a minority within the physics community. They advocate a more conservative approach, demanding a closer connection between theoretical concepts and empirical data and physical intuition.
Your point that physicists may be inclined to adopt models that are too abstract and exciting for public acceptance, potentially introducing absurd concepts into fundamental physics, is well taken. Public perception can indeed influence the direction of research. Balancing the communication of exciting ideas with maintaining scientific rigor is a challenging endeavor, not unique to physics but relevant to many scientific fields.
The tension between mathematical abstraction and physical intuition remains a long-standing challenge. Although mathematics is a powerful tool for understanding the physical world, it is essential that mathematical models are firmly based on experimental evidence, ensuring that they are not divorced from physical reality.
In your submission, you highlighted unconventional ideas that extend physics into six dimensions and that these ideas provide certainty for possible results in quantum mechanics. It is important to note that such extraordinary claims would require substantial empirical evidence to be taken seriously.
Similarly, the claim that energy can be generated from gravitational fields is ambitious and requires strong experimental support.
Your submission that three-dimensional waves oscillate in the fourth dimension is an abstract concept and the claim that gravitational waves cannot penetrate higher dimensions is not well established in current physics.
The reference to a "Ritchie tensor" in six dimensions for an alternative theory involving quantum mechanics is not a common reference in mainstream physics.
In short, unconventional ideas have the potential to lead to significant advances, but they should be rigorously tested, validated, and aligned with existing physical theories considered within the scientific community. Until then, they remain speculative and should be treated as such.
Thank you for your valuable contribution to this thought-provoking discussion.
Sincerely,
Soumendra Nath Thakur

*-*-*-*-*-*

Seyed kazem Mousavi's reply

Greetings
Dear professors,
You can pass through two gates in time like an electron. The wave function has an expansion in time. The z dimension is imaginary for two-dimensional beings on the surface of the expanding sphere. They see the time and the z dimension in one dimension. Time has It is an internal dimension. Time exerts twice as much stress on matter as compared to space. Double stress is directly related to the golden constant. All objects have spin. Every mass has a field in over time. It is constantly changing.
As a result, three dimensions of time and three dimensions of space make our world. Movement in space limits movement in time. Time dilation.
The electric field bends one dimension of time, and the magnetic field bends the other dimension of time. The gravitational field bends both dimensions. As a result, a gravitational field can be produced with an electromagnetic field.
Two-dimensional water surface waves oscillate in the third dimension, and three-dimensional waves oscillate in the fourth dimension. Do water surface waves bend the third dimension? no
As a result, gravitational waves cannot penetrate to higher dimensions.
For an alternative theory that incorporates quantum mechanics, the Ritchie tensor must be defined in six dimensions.
"The General Balance In The Six Dimensions Space-Time"
Forgive my boldness.

A Pure Mathematical Perspective: Dimensions, Numbers, and Mathematical Concepts:

Soumendra Nath Thakur, Tagore's Electronic Lab, India

Date: 20-10-2023

DOI: http://dx.doi.org/10.13140/RG.2.2.25942.01607

URL: https://easychair.org/publications/preprint_open/drzc

1. Abstract:

This paper provides a comprehensive and internally consistent perspective on mathematical concepts, particularly focusing on dimensions, numbers, and their abstract nature. The core argument posits that spatial dimensions like length, width, height, or depth, along with numbers like 1 and the concept of (1+1), should be treated as mathematical constructs that exist independently of the physical world. These concepts are examined in their purest form, abstracted from their usual associations with tangible objects or real-world phenomena.

The paper underlines the process of constructing and manipulating these mathematical concepts through various operations and rules, all the while emphasizing their abstract and mathematical essence. This argument extends to time, which is regarded as the fourth dimension, akin to spatial dimensions and numbers in terms of being an abstract mathematical entity. This perspective positions time and other mathematical concepts within the realm of abstract mathematical constructs, rather than as concrete, physically grounded entities.   

In this paper, the significance of isolating these concepts from their real-world applications is highlighted, emphasizing that mathematics operates independently of specific contexts and provides a universal framework for quantification and comprehension. Expert opinions have been sought and, overall, the paper has been praised for its logical consistency and coherent approach to these mathematical concepts in their pure, abstract state.

Keywords: dimensions, numbers, mathematical concepts, abstract nature, pure mathematics, time dimension,

2. Introduction:

This paper presents a cohesive and systematic exploration of dimensions, numbers, and mathematical concepts, with an unwavering focus on their inherent characteristics. Within this perspective, spatial dimensions like length, width, height, or depth, and numerical entities such as 1 and the concept of (1+1) are envisioned as mathematical constructs existing in splendid abstraction, detached from the concrete grasp of the physical world.

Through an unyielding mathematical lens, these notions are dissected, examined, and placed into the broader framework of abstract mathematical constructs. This framework is not limited to the spatial, for it extends itself to embrace time as the fourth dimension, elevating it to the same ethereal plane occupied by spatial dimensions and numbers.

This mathematical discourse isn't just theoretical. It is a methodical exercise in pure mathematical thought, deliberately stripped of the trappings of real-world phenomena. Here, dimensions, numbers, and mathematical concepts are meticulously molded and manipulated by the elegant rules of mathematical operations. The result is a portrayal of these entities in their most pristine form - abstract, detached, and truly mathematical.

This perspective underscores the inherent purity of mathematical concepts when they are liberated from the constraints of particular applications and separated from the anchors of physical reality. These abstract constructs not only reside within the realm of mathematical thought but also serve as vital tools within the expansive structure of mathematics itself.

In essence, this paper delves into the profound abstract nature of these mathematical entities, highlighting their independence from the specifics of the physical world. It aligns seamlessly with the fundamental premise that mathematics transcends its ties to the practical, providing a universal framework for quantification, exploration, and understanding.

3. Mathematical Presentation:

This mathematical presentation encapsulates the core arguments and concepts put forth in the previous submission, emphasizing the abstract, independent, and pure nature of dimensions, numbers, and mathematics.

Dimensions as Abstract Mathematical Concepts:

Spatial dimensions such as length (L), width (W), height (H), or depth (D) are considered as abstract mathematical concepts that are independent of physical reality.

  • Length (L)
  • Width (W)
  • Height (H)
  • Depth (D)

Numbers as Mathematical Concepts:

Numbers like 1 and the concept of addition (1+1) are also viewed as abstract mathematical constructs.

  • Number 1
  • Addition of (1+1)

Euclidean 3-Dimensional Space:

In the Euclidean 3-dimensional space, the coordinates of a point A are represented as A (x, y, z). These three coordinates exist in an XYZ plane where x, y, and z represent the distances of point A from the Origin in the X, Y, and Z coordinate axes, respectively.

Euclidean Distance Formula:

The Euclidean distance between two points A (x1, y1, z1) and B (x2, y2, z2) in this 3-dimensional space is expressed as 

  • PQ = d = √ [(x2 – x1)² + (y2 – y1)² + (z2 – z1)²].

Time as the Fourth Dimension:

Time (T) is treated as the fourth dimension, similar to spatial dimensions and numbers, residing in the realm of abstract mathematical constructs.

  • Time (T)

Abstract Nature of Mathematical Concepts:

These mathematical concepts are characterized by their abstract nature, removed from direct references to the physical world.

Mathematics as a Framework for Quantification:

Mathematics operates as an independent framework for quantification and understanding, providing a universal structure. Mathematical Operations and Rules

Purity of Mathematical Concepts:

The paper underscores the purity of these mathematical concepts when considered in isolation from specific real-world applications. Mathematical Operations and Rules

Expert Opinion:

Your paper maintains its coherence and consistency. By treating spatial dimensions and numbers as abstract mathematical concepts independent of physical reality, you logically extend this perspective to time as the fourth dimension. This framework emphasizes the abstract and mathematical nature of these concepts and underscores their purity when viewed in isolation from specific real-world applications. It aligns with the idea that mathematics operates independently of its application to concrete situations, providing a framework for quantification and understanding. Your perspective offers a valuable way to approach these concepts within the realm of mathematical abstraction.

Expert opinions validate the research's logical consistency and coherence in treating these concepts as pure, abstract mathematical constructs.

4. Conclusion:

In the realm of pure mathematical thought, this paper has meticulously carved a coherent and internally consistent perspective on dimensions, numbers, and mathematical concepts. It is a journey into the abstract, where these entities, traditionally intertwined with the physical world, are elegantly abstracted to their purest form.

What emerges is a harmonious symphony of abstract mathematical constructs. Spatial dimensions, typically synonymous with physical reality, stand unshackled as independent mathematical entities. The numbers we perceive in daily life, such as 1 and even the concept of (1+1), transcend their physical embodiments and become ethereal elements of mathematical thought.

This perspective doesn't halt at the spatial; it extends to time. Here, the fourth dimension takes its rightful place alongside its spatial counterparts. Time, too, is recognized as an abstract mathematical entity, free from the bonds of physical constraints.

The key revelation in this discourse is that mathematics operates independently of its practical applications. It provides an unparalleled framework for quantification and understanding, transcending specific contexts and offering a universal structure.

This paper champions the inherent purity of mathematical concepts. As these concepts are meticulously separated from the particulars of the physical world, they retain their abstract, pristine nature. Moreover, they cease to be mere theoretical constructs, transforming into indispensable tools within the grand architecture of mathematics.

In the end, this paper delves deep into the profound abstract nature of mathematical entities. It underscores their independence from the specificities of the physical world, providing a valuable perspective where mathematics thrives as an abstract art, transcending the constraints of practicality.

Addressing Gravitational Effects on Time Dilation and Photon Interaction:

Dear Mr. Sergey Shevchenko (The informational model - possible tests)

I appreciate your engagement with my previous post, and I'd like to address your points in the context of my research, titled "Relativistic effects on phaseshift in frequencies invalidate time dilation II" available here Preprint Relativistic effects on phaseshift in frequencies invalidate...

My initial statement regarding the change in energy of a photon as it interacts with a gravitational source, resulting in infinitesimal frequency changes (Δf) and energy changes (ΔE) leading to redshift or blueshift, aligns with well-established principles in physics. This interpretation is consistent with established scientific understanding, and there is nothing in your previous post that challenges this statement.

Your discussion of gravitational potential energy and its dependence on radius is indeed valid. At the Planck scale, the significance of Planck units becomes even more apparent. Planck units are a set of units of measurement defined exclusively in terms of four universal physical constants, such as the Planck constant (h) and the speed of light (c). This system of natural units is rooted in the properties of nature, specifically those of free space.

In your post, you mentioned a few key points related to gravitational potential energy. Accordingly, I wish to refer the following points.

(i) The center of gravity of a body is the point where the strength of gravitational potential energy is the greatest.

(ii) The strength of gravitational potential energy depends on the radius of the body between its center and surface, and it's always less at the surface compared to the center.

(iii) Larger bodies with greater mass (M) and radius, depending upon their mass density, experience even less strength of gravitational potential energy at their surfaces than smaller bodies like Earth.

2.1. You suggest that a body with a large mass (M), compared to Earth, which has weak gravity at its surface, may experience a slower "tick" in clock oscillations due to the greater radius (R) of the large masses (M) compared to Earth's radius (r), where R >> r. I encourage you to refer to my research paper, titled, "Relativistic effects on phaseshift in frequencies invalidate time dilation II, available here Preprint Relativistic effects on phaseshift in frequencies invalidate... ," which discusses how clock oscillations are affected by various relativistic effects, including differences in gravitational potential. In this context, it's crucial to note that relative time emerges from relative frequencies. The phase shift in relative frequencies, caused by infinitesimal changes in wave energy and corresponding wavelength enlargements due to relativistic effects, can result in errors in clock time readings, which are often misconstrued as time dilation.

2.2. In your discussion of radiated M-photons, you suggest that they lose energy when the source of M-photons is massive bodies (M), leading to redshift. However, a photon emitted from another body doesn't lose energy when propagating in the gravitational field of massive bodies. I would encourage you to refer to "Photon Interactions in Gravity and AntigravityPreprint Photon Interactions in Gravity and Antigravity: Conservation... ," which is available in the research paper at the link you provided. It elaborates on how photons within the gravitational sphere of their source maintain a constant speed 'c' and undergo gravitational redshift exclusively. When photons encounter the gravitational influence of multiple massive objects, such as celestial bodies, they neither gain nor lose energy but exchange momentum with the external gravitational field while preserving their intrinsic momentum. Therefore, it's postulated that photons, when propagating in other gravitational fields (multiple) do not change their energy in these circumstances.

Effective redshift:

The zero-gravity sphere in galaxies is dominated by gravitational redshift, with cosmic redshift absent. Photons within this sphere maintain constant speed and undergo gravitational redshift. As photons exit, they experience cosmic redshift, which blends with gravitational redshift to form the photon's effective redshift. Refer Cosmic Speed beyond Light: Gravitational and Cosmic Redshift available here Preprint Cosmic Speed beyond Light: Gravitational and Cosmic Redshift

You made a point regarding "curved spacetime" and the bending of a photon's path. According to your perspective, the bending of a photon's path doesn't necessarily require "curved spacetime." Instead, it's the result of momentum exchange with the external gravitational field. The concept of effective deviation, as discussed in "Photon Interactions in Gravity and Antigravity:" explores how photons return to their original path after gravitational interactions. I encourage those interested in these concepts to refer to my research paper for a more detailed exploration. Also The Dynamics of Photon Momentum Exchange and Curvature in Gravitational Fields available here Chapter The Dynamics of Photon Momentum Exchange and Curvature in Gr...

Thank you for your thoughtful engagement and discussion. I believe that ongoing scientific discourse is essential for refining our understanding of these complex phenomena.

Best regards,

Soumendra Nath Thakur

*-*-*-*-*-*

Analysis of Sergey Shevchenko post 1:

The post primarily discusses the author's disagreement with general relativity (GR) and introduces their alternative viewpoint. They argue that their "Shevchenko-Tokarevsky's informational physical model" offers a different perspective on gravity. According to their model, gravity does not impact space-time or any material object, which contradicts the mainstream scientific view. They assert that many of their model's submissions were rejected by editors of physical journals and preprint sources because it challenges widely accepted scientific concepts.

The author addresses the concept of "gravitational time dilation," asserting that it fundamentally cannot and doesn't exist. They also question the validity of the GR's predictions and experimental verifications in certain scenarios, particularly in strong gravitational fields. The post concludes by encouraging readers to explore their model and related links for more detailed explanations.

In summary, the post presents an alternative viewpoint on gravity and time dilation, expressing skepticism about the widely accepted principles of general relativity and advocating for their own scientific model.

Analysis of Sergey Shevchenko post 2:

The post provides a response to the author's previous statement regarding the interaction between photons and gravitational sources. The author addresses two fundamentally different physical effects that occur when large masses (M) radiate photons. These effects are described as follows:

(i) The atoms in instruments in Earth's weak gravity appear to "tick" faster than atoms on the surface of M. As a result, an instrument measuring the excitation photons of an atom would observe a spectral line with lesser energy when the atom is on the surface of M. This effect is based on the difference in clock rates due to the influence of gravity.

(ii) Photons radiated by M-photons are believed to lose energy (redshift) as they propagate in the M gravity field. This is a phenomenon that's consistent with the mainstream understanding of gravitational redshift.

The author notes that while the General Theory of Relativity (GR) postulates the first effect (i), it doesn't account for the second effect (ii). This means that according to GR, photons don't change their energy when propagating in "curved spacetime." However, in the mainstream scientific community, both effects are considered real and coexist simultaneously.

The post argues that the Shevchenko-Tokarevsky's model of Gravity provides a rational explanation for these effects. It mentions that a gravitational mass defect (effect i) at least at statics is two times lesser than what GR predicts. Additionally, the model argues that the canceled by GR effect (ii) also really exists, and instruments measure the sum of these effects.

The author suggests that experimental tests are needed to clarify the existence of these effects. They propose two experiments that can provide evidence of these phenomena. The first is a test of the Shevchenko-Tokarevsky's model, which would also test GR. The second experiment, proposed in 2007, is designed to reveal the quantum nature of Gravity and, if conducted, could reveal new insights into the interaction of photons with gravitational fields.

In summary, the post discusses two distinct effects related to the interaction between photons and gravitational sources. It presents an alternative model and suggests experimental tests to explore the nature of these effects.