25 July 2025

Implications of Negative Gravitational Mass (−Mɢ) and Frequency-Based Total Energy in ECM:

Total Energy Interpretation in ECM

Total Energy at emission:

Eₜₒₜₐ = PEᴇᴄᴍ + KEᴇᴄᴍ  (−Mᵃᵖᵖ) + (−Mᵃᵖᵖ) = 2Mᵃᵖᵖ

Since v = c, then

Eₜₒₜₐₗ = ½(−2Mᵃᵖᵖ) = −Mᵃᵖᵖ ΔM

Thus,

Eₜₒₜₐₗ = ΔM = hf/c²

Where Mᵃᵖᵖ corresponds to ΔM

This formulation tightly binds frequency (f), mass shift (ΔM), and apparent mass (Mᵃᵖᵖ), emphasizing the frequency-origin of energetic processes.

·         Photon Trajectories: Deflection in gravitational fields occurs due to the effective curvature induced by differential Mᵉᶠᶠ values, where Mᵉᶠᶠ = Mᴍ - Mᵃᵖᵖ:.

·         Dark Energy Behaviour: Negative Mɢ explains the repulsive force contributing to the Universe’s accelerated expansion.

·         Gravitational Redshift: Arises not from spacetime distortion but from variations in Mᵃᵖᵖ and ΔM.


Time – as Understood in Extended Classical Mechanics (ECM)

July 25, 2025

Extended Classical Mechanics (ECM) asserts that time originates from energetic transitions and vibrational dynamics—not as a coordinate or dimension but as a physically emergent metric from real phenomena. This challenges relativistic interpretations that treat time as flexible and observer-dependent.

Why ECM Cannot Rely on the Relativistic Concept of Time

Relativity-based time dilation, governed by the Lorentz factor γ = 1/√(1 − v²/c²), has been critically challenged in ECM-related studies for the following reasons:

Critique Summary:
Neglect of acceleration: γ accounts only for relative velocity (v), not for the acceleration (a) that leads to that velocity.

Inapplicability in normal conditions: At low velocities (e.g. v = 100 m/s or even 1,000,000 m/s), γ ≈ 1, yielding negligible change. Thus, it’s non-functional in most real-world scenarios.

Lack of material response (k): The Lorentz formulation overlooks material stiffness or energetic resistance, a critical factor in energetic transitions.

Incompatibility with mass–energy transitions: ECM treats energy-mass transformation (Δm, ΔE) with direct application of phase-frequency dynamics, whereas γ fails to account for dynamic nuclear-scale interactions or stiffness-modulated deformation.

Conceptual deformation of classical structure: γ introduces a deformation of classical interpretations rather than an expansion or completion.

#Time #ECMTime