Lay Summary
Phase shifts and infinitesimal loss of wave energy occur when an oscillatory wave experiences a change in its phase angle, which can happen due to relativistic effects including interactions with different media or obstacles. Wavelength distortions refer to changes in the wavelength of an oscillatory wave due to phase shifts, as phase shift is inversely proportional to wavelength. These can occur due to various factors, excluding dispersion or refraction, as propagating waves are different than oscillatory waves.
Time dilation is a flawed concept in Einstein's theory of relativity, as it incorrectly states that time passes differently for observers in relative motion. In reality, it is phase shifts in clock oscillation and corresponding wavelength and time distortions. Wavelength is proportional to time (T).
Relativistic effects in time dilation have been verified with biased experiments, as such experiments should have been done on wavelength distortions rather than time dilation. Time, as a concept, does not subject to any experiment on it, unless inviting error. Time is standardised by time standardizing authorities and is not subject to biased experiments.
While these concepts are not distinct, phase shift and wavelength distortions are mutually exclusive, as they are valid scientific interpretations. They are interconnected with time distortion but not with the flawed concept of time dilation.
In recent times, scientists appreciate that these phenomena of time distortions and phase shifts are interconnected and collectively enrich our understanding of the universe, rather than understanding the erroneous time dilation phenomenon. Clocks designed for proper time measurement account for relativistic effects, including time distortion, but not for flawed time dilation.
No comments:
Post a Comment