31 August 2024

Dark Energy as a By-Product of Negative Effective Mass: Discussion.


Soumendra Nath Thakur
31-08-2024

Effective dark energy is interpreted as a manifestation of negative effective mass, a concept rooted in extended classical mechanics and involving the dynamics of potential, kinetic, and gravitational forces. This phenomenon emerges from the apparent reduction in invariant matter mass and its resulting influence on the universe's overall dynamics. ResearchGate Discussion Link Here!

Note: Matter mass Mᴍ is understood as the combined mass of normal matter (such as baryonic matter) and dark matter.

Summary:

Effective dark energy, considered a by-product of negative effective mass, arises from the intricate interplay of potential, kinetic, and gravitational dynamics in the universe. This concept challenges traditional views by suggesting that dark energy is not a separate entity but rather a consequence of negative effective mass. The fundamental equation, PEᴛₒₜᴜₙᵢᵥ ∝ Mᵉᶠᶠᴜₙᵢᵥ, establishes a direct relationship between the universe's potential energy and its effective mass, highlighting their intrinsic connection.

In the early universe, effective mass played a critical role in determining the potential energy. The universal force was necessary to convert this potential energy into kinetic energy, facilitating the rapid expansion of the universe. As the effective mass decreased, acceleration increased, reflecting the dynamics of this early rapid expansion, as described by the equation Fᴜₙᵢᵥ = Mᵉᶠᶠᴜₙᵢᵥ · aᵉᶠᴜₙᵢᵥ. This equation illustrates that the universal force is directly proportional to effective acceleration, offering key insights into the universe's expansion dynamics.

As the universe continued to evolve, its potential energy became influenced by both matter mass and effective mass, including contributions from dark energy and other effective masses. Later, the universal force was shaped by both matter and effective mass, with effective acceleration inversely related to the combined mass. The ongoing generation of dark energy and its dominance in gravitational dynamics are thus explained by the relationship between effective mass and gravitational effects, suggesting a repulsive gravitational force that significantly influences the universe's structure and evolution.

Effective dark energy can thus be seen as a by-product of negative effective mass, arising from the complex interrelations of potential, kinetic, and gravitational forces, and reflecting the apparent reduction in invariant matter mass over time.

Reference: Chernin, A. D., Bisnovatyi-Kogan, G. S., Teerikorpi, P., Valtonen, M. J., Byrd, G. G., & Merafina, M. (2013). Dark energy and the structure of the Coma cluster of galaxies. Astronomy and Astrophysics, 553, A101. https://doi.org/10.1051/0004-6361/201220781 

UPDATE 01-09-2024: Expanded Insights on Negative Effective Mass and Dark Energy Dynamics

Negative Effective Mass: Insights from Universal Force and Acceleration Dynamics

The universal force Fᴜₙᵢᵥ is defined by the product of the effective acceleration aᵉᶠᶠᴜₙᵢᵥ and the combined inverse contributions of two types of mass: the variable effective mass Mᵉᶠᶠᴜₙᵢᵥ and the constant matter mass Mᴍᴜₙᵢᵥ. This relationship emphasizes that the universal force depends not only on acceleration but also on the dynamic interplay between these masses. The effective mass reflects the system’s response to dynamic factors such as motion and gravitational interactions, and it can differ from the constant matter mass by varying according to system conditions.

The universal force and acceleration increase or decrease proportionally with the combined reciprocal masses, where variations in the effective mass directly influence acceleration and the resulting universal force. As the effective mass decreases, acceleration increases, and vice versa. This relationship aligns with the interpretation of "negative effective mass," where changes in the dynamic state of the universe alter gravitational interactions.

The concept of "negative effective mass" arises from this interpretation of effective mass. When extended to dark energy's influence on gravitational dynamics, it captures the idea that the effective mass may exhibit properties akin to a negative effective density, leading to repulsive gravitational effects. In this context, "negative effective mass" describes how the dynamic properties of dark energy counteract gravitational attraction, contrasting with the attractive behaviour of conventional matter.

The effective mass Mᵉᶠᶠᴜₙᵢᵥ reflects the apparent mass loss or gain relative to the constant matter mass Mᴍᴜₙᵢᵥ. When there is an apparent mass loss, the effective mass increases to maintain balance within the system’s dynamics, suggesting that under certain conditions, the effective mass could be perceived as "negative." This negative value provides a framework for understanding inverse gravitational effects observed with dark energy, where repulsive dynamics challenge traditional gravitational interactions.

Additionally, when the universal force Fᴜₙᵢᵥ increases, the effective acceleration aᵉᶠᶠᴜₙᵢᵥ also increases. Initially, the effective mass Mᵉᶠᶠᴜₙᵢᵥ is equivalent to the matter mass Mᴍᴜₙᵢᵥ. However, as force or acceleration continues to increase, the effective mass can exceed the matter mass, thereby potentially dominating the gravitating mass Mɢᴜₙᵢᵥ. This implies that the effective mass plays a crucial role in determining the overall gravitational behaviour, supporting the idea of "negative effective mass" in scenarios where dark energy exerts a repulsive force.

By incorporating the concept of "negative effective mass" into the extended framework of classical mechanics, we develop a more comprehensive understanding of the gravitational dynamics, allowing us to account for the repulsive effects of dark energy on the universe's expansion. This refined interpretation bridges the abstract notion of dynamic mass variations with observable cosmological phenomena, providing insight into the complex interplay between mass, force, and acceleration in the universe.

Dark energy's influence on the universe's expansion can be understood in terms of the effective mass (Mᵉᶠᶠᴜₙᵢᵥ) exhibiting properties that suggest a negative effective density. When the effective mass exceeds the matter mass (Mᴍᴜₙᵢᵥ), it contributes to gravitational dynamics that may resemble those associated with a negative gravitating mass (Mɢᴜₙᵢᵥ), leading to the repulsive effects observed in the universe.

Mathematical Framework:

The mathematical framework establishes a relationship between potential energy, effective mass, and universal force, providing insight into the universe's expansion and the concept of "negative effective mass." The potential energy of the universe (PEᴛₒₜᴜₙᵢᵥ) is directly proportional to the effective mass (Mᵉᶠᶠᴜₙᵢᵥ), indicating that the effective mass plays a crucial role in defining the universe's dynamics.
The equation Fᴜₙᵢᵥ = Mᵉᶠᶠᴜₙᵢᵥ · aᵉᶠᶠᴜₙᵢᵥ describes the universal force as directly proportional to effective acceleration (aᵉᶠᶠᴜₙᵢᵥ) and inversely proportional to effective mass (Mᵉᶠᶠᴜₙᵢᵥ). An increase in acceleration leads to an increase in the universal force and a corresponding decrease in effective mass, which can lead to the formation of matter. Over time, potential energy becomes dependent on both the matter mass (Mᴍᴜₙᵢᵥ) and the present effective mass, shaping the gravitational dynamics.

By linking these parameters, this framework explains how variations in effective mass, particularly when perceived as negative, contribute to the repulsive effects associated with dark energy, providing a comprehensive view of the complex interplay between mass, force, and acceleration in the universe.

The Equations:

PEᴛₒₜᴜₙᵢᵥ ∝ Mᵉᶠᶠᴜₙᵢᵥ,

This expression, establishes a direct relationship between the universe's potential energy and its effective mass. In the early universe, effective mass played a critical role in determining the potential energy. The universal force was necessary to convert this potential energy into kinetic energy, facilitating the rapid expansion of the universe. As the effective mass decreased, acceleration increased, reflecting the dynamics of this early rapid expansion.

The equation Fᴜₙᵢᵥ = Mᵉᶠᶠᴜₙᵢᵥ · aᵉᶠᶠᴜₙᵢᵥ

describes that the universal force is directly proportional to effective acceleration, and effective acceleration is inversely proportional to effective mass. This relationship suggests that in the early universe, the universal force was the product of the effective mass and the effective acceleration.

Since acceleration is inversely proportional to mass, an increase in effective acceleration leads to a corresponding increase in the universal force, which, in turn, causes a decrease in the effective mass as the acceleration increases, and so corresponding increase in matter mass through formation. As acceleration increase, the effective mass decrease, forming matter mass.

Later, the potential energy became dependent on both the matter mass (Mᴍᴜₙᵢᵥ) and the present effective mass.

The force is influenced by the interaction between the matter mass and the effective mass, where the effective acceleration (aᵉᶠᶠᴜₙᵢᵥ) is inversely related to the total mass, comprising both matter and effective mass, represented by the equation:

Fᴜₙᵢᵥ = (Mᴍᴜₙᵢᵥ+Mᵉᶠᶠᴘᵣₑₛₑₙₜ) · aᵉᶠᶠᴜₙᵢᵥ

As the effective acceleration increases, the apparent matter mass decreases, corresponding increase in present effective mass, which is negative, within this combined mass. Thus, the emergence of dark energy from negative effective mass and its dominant role in gravitational dynamics can be explained by the relationship between effective mass and gravitational effects. As acceleration increased, the apparent matter mass decreased, generating effective mass.

Dark energy's influence on the universe's expansion can be understood in terms of the effective mass (Mᵉᶠᶠᴜₙᵢᵥ) exhibiting properties that suggest a negative effective density. When the effective mass exceeds the matter mass (Mᴍᴜₙᵢᵥ), it contributes to gravitational dynamics that may resemble those associated with a negative gravitating mass (Mɢᴜₙᵢᵥ), leading to the repulsive effects observed in the universe. As provided under, "Negative Effective Mass: Insights from Universal Force and Acceleration Dynamics.

30 August 2024

The Role of Effective Mass in Gravitational Dynamics:

Soumendra Nath Thakur
ORCiD: 0000-0003-1871-7803
30 August 2024

Introduction

The study "Generation of Dark Energy in the Universe: Dominance in Gravitational Dynamics" presents a novel framework for understanding the gravitational dynamics of the universe, incorporating the concept of effective mass. This literature review will delve into the key findings of the study, its implications for cosmology, and potential areas for future research.

Key Findings

Effective Mass and Gravitational Mass: 

The study introduces the equation

Mɢᴜₙᵢᵥ = Mᵉᶠᶠᴜₙᵢᵥ = Mᴍᴜₙᵢᵥ + Mᵉᶠᶠᴘᵣₑₛₑₙₜ, 

which relates the gravitational mass of the universe (Mɢᴜₙᵢᵥ) to its matter mass (Mᴍᴜₙᵢᵥ) and present effective mass (Mᵉᶠᶠᴘᵣₑₛₑₙₜ).

Negative Gravitating Mass: 

When the effective mass exceeds matter mass, negative gravitating mass arises, leading to repulsive gravitational effects.

Potential Energy: 

The potential energy of the universe is linked to the effective mass and matter mass, evolving over time.

Force and Acceleration: 

The study derives equations relating universal force, effective mass, and effective acceleration, providing insights into the dynamics of the universe.

Implications for Cosmology

Accelerated Expansion: The dominance of negative gravitating mass contributes significantly to the observed accelerated expansion of the universe.

Dark Matter and Dark Energy: 

The study offers a new perspective on the role of dark matter and dark energy in shaping cosmic dynamics.

Quantum Gravity: 

The concepts introduced in the study may have implications for quantum gravity theories, providing potential avenues for further exploration.

Conclusion

The study "Generation of Dark Energy in the Universe: Dominance in Gravitational Dynamics" offers a valuable contribution to our understanding of the universe's gravitational dynamics. By introducing the concept of negative gravitating mass and its relationship to effective mass and matter mass, the study provides new insights into the drivers of cosmic expansion and the interplay between different forms of energy and matter. Future research can delve deeper into these concepts, exploring their implications for quantum gravity and potential experimental verification.

Dark Energy as a Consequence of Negative Effective Mass

Soumendra Nath Thakur
ORCiD: 0000-0003-1871-7803
30 August 2024

Abstract:

This analysis proposes a novel interpretation of dark energy as a by-product of negative effective mass, arising from the interplay of potential energy, kinetic energy, and gravitational dynamics within the universe. We reason that dark energy is not a separate entity but rather a consequence of well-established physical principles.

Introduction:

This introduction provides a compelling perspective on dark energy as a consequence of negative effective mass. it effectively highlight the following points:

·         Dark energy could be a manifestation of negative effective mass, a concept rooted in extended classical mechanics.

·         The interplay of potential energy, kinetic energy, and gravitational dynamics contributes to the generation of negative effective mass.

·         The reduction of invariant matter mass due to forces or potential differences can lead to negative effective mass.

Implications and Further Exploration

·         If dark energy is indeed a consequence of negative effective mass, it challenges the traditional view of dark energy as a separate, mysterious substance.

·         Understanding the quantum nature of gravity might provide insights into the relationship between negative effective mass, dark matter, and dark energy.

·         Designing experiments to directly measure negative effective mass or its effects could provide crucial evidence for this theory.

·         By exploring these areas, we can gain a deeper understanding of the nature of dark energy and its implications for the universe.

Key Findings:

·         Negative Effective Mass: Dark energy can be understood as a manifestation of negative effective mass, a concept rooted in extended classical mechanics.

·         Potential Energy and Dynamics: The interplay of potential energy, kinetic energy, and gravitational forces contributes to the generation of negative effective mass.

·         Invariant Matter Mass: The apparent reduction of invariant matter mass due to forces or potential differences can lead to negative effective mass.

Conclusion:

The study suggests that dark energy is not a mysterious entity but rather a natural consequence of the interplay of fundamental physical principles. By understanding negative effective mass and its role in gravitational dynamics, we can gain deeper insights into the nature of dark energy and its implications for the universe.

Scientific Presentation of Generation of Dark Energy and Its Dominance in Gravitational Dynamics


Soumendra Nath Thakur
ORCiD: 0000-0003-1871-7803
30 August 2024

Abstract

This study offers a detailed scientific analysis and extension of the earlier work by Soumendra Nath Thakur, titled, "Generation of Dark Energy in the Universe: Dominance in Gravitational Dynamics" (29 August 2024). Thakur's research elucidates how dark energy emerges when the effective mass (Mᵉᶠᶠ) surpasses the matter mass (Mᴍ), and how a negative gravitating mass (Mɢ <0) influences the gravitational dynamics of the universe. This paper builds upon Thakur's foundational concepts by providing a rigorous mathematical and theoretical framework to explain the role of dark energy in the evolution of the universe's gravitational behaviour. By integrating key equations and relationships from Thakur's study, this new work further explores the implications of dark energy and its dominant effects on universal expansion and gravitational dynamics.

Keywords: Dark Energy, Gravitational Dynamics, Effective Mass, Gravitating Mass, Universal Expansion,

Introduction

The nature of dark energy and its role in the dynamics of the universe have been central themes in cosmology, particularly in understanding the observed accelerated expansion. Recent analyses of the universe's energy and mass components reveal intricate relationships between potential energy, effective mass, and gravitational effects. This literature review explores how these relationships contribute to the generation of dark energy and its dominance in the gravitational dynamics of the universe.

Theoretical Foundations

1. Relationship Between Potential Energy and Effective Mass

The fundamental equation relating the potential energy of the universe (PEᴛₒₜᴜₙᵢᵥ) to the effective mass (Mᵉᶠᶠᴜₙᵢᵥ) is expressed as:

PEᴛₒₜᴜₙᵢᵥ ∝ Mᵉᶠᶠᴜₙᵢᵥ 

This relationship highlights the intrinsic connection between mass and energy. In the early universe, the potential energy was primarily governed by the effective mass, as no significant other energy forms (e.g., kinetic energy) were present. The effective mass (Mᵉᶠᶠᴜₙᵢᵥ) served as a key determinant of the universe's potential energy, encapsulating the total energy content before the emergence of matter.

2. Force and Acceleration Dynamics in the Early Universe

The dynamics of the early universe can be described by:

Fᴜₙᵢᵥ = Mᵉᶠᶠᴜₙᵢᵥ·aᴜₙᵢᵥᵉᶠᶠ

Here, Fᴜₙᵢᵥ represents the universal force, and aᴜₙᵢᵥᵉᶠᶠ denotes the effective acceleration. This equation implies that the force in the early universe was the product of the effective mass and acceleration. The immense force and acceleration during this period were essential for converting potential energy into kinetic energy as the universe expanded.

The proportional relationship:

Fᴜₙᵢᵥ ∝ aᴜₙᵢᵥᵉᶠᶠ

indicates that the universal force is directly proportional to the effective acceleration. An increase in effective acceleration resulted in a corresponding increase in the universal force, reflecting the dynamics of early cosmic expansion.

Additionally, the inverse proportionality:

aᴜₙᵢᵥᵉᶠᶠ ∝ Mᵉᶠᶠᴜₙᵢᵥ

shows that as the effective mass decreased, the acceleration increased. This relationship is crucial for understanding how the effective mass diminished as the universe expanded, leading to higher accelerations and conversion of energy forms.

3. Evolution of Potential Energy with Matter and Effective Mass

As the universe evolved, the potential energy became a function of both matter mass (Mᴍᴜₙᵢᵥ) and present effective mass (Mᵉᶠᶠᴘᵣₑₛₑₙₜ):  

PEᴛₒₜᴜₙᵢᵥ ∝ (Mᴍᴜₙᵢᵥ + Mᵉᶠᶠᴘᵣₑₛₑₙₜ)

This equation reflects the changing nature of potential energy as the universe transitioned from its initial state to the present. It incorporates both the matter that formed and the contributions from dark energy or other effective masses.

4. Current Dynamics and Effective Acceleration

For the present universe, the universal force is expressed as:

Fᴜₙᵢᵥ = (Mᴍᴜₙᵢᵥ + Mᵉᶠᶠᴘᵣₑₛₑₙₜ)·aᴜₙᵢᵥᵉᶠᶠ

This indicates that the force is influenced by both the matter mass and the effective mass. The effective acceleration aᴜₙᵢᵥᵉᶠᶠ is inversely related to the combined mass of matter and effective mass:

aᴜₙᵢᵥᵉᶠᶠ ∝ 1/(Mᴍᴜₙᵢᵥ + Mᵉᶠᶠᴘᵣₑₛₑₙₜ)

As the combined mass increases, the effective acceleration decreases. This inverse relationship underscores how the presence of dark energy affects the acceleration of the universe's expansion.

Dark Energy Generation and Dominance

The generation of dark energy and its dominance in gravitational dynamics are elucidated by the relationship between effective mass and gravitational effects:

Mɢᴜₙᵢᵥ = Mᴍᴜₙᵢᵥ + Mᵉᶠᶠᴘᵣₑₛₑₙₜ 

defines the gravitating mass as the sum of matter mass and effective mass. Dark energy is associated with the effective mass, and when Mᵉᶠᶠᴘᵣₑₛₑₙₜ exceeds Mᴍᴜₙᵢᵥ, dark energy becomes a significant factor.

Negative Gravitating Mass: When the gravitating mass Mɢᴜₙᵢᵥ is negative, it suggests repulsive gravitational effects. This scenario aligns with observations of the accelerated expansion of the universe. The dominance of dark energy, represented by the effective mass, becomes crucial in driving this expansion, counteracting the attractive force of conventional matter.

Repulsive Gravitational Effects: A negative gravitating mass indicates that gravity may exhibit repulsive characteristics, a key feature attributed to dark energy. This repulsion influences the structure and dynamics of the universe, contributing to its accelerated expansion.

Conclusion

The generation of dark energy and its dominance in gravitational dynamics are intricately linked to the interplay between potential energy, effective mass, and matter mass. The provided equations and expressions elucidate how the effective mass, including contributions from dark energy, influences the universe's expansion and gravitational behaviour. As the universe evolved, the transition from an early state dominated by effective mass to a present state where dark energy plays a central role highlights the fundamental dynamics shaping the cosmos. Understanding these relationships provides critical insights into the nature of dark energy and its impact on the universe's acceleration and expansion.

References:

1. Chernin, A. D., Bisnovatyi-Kogan, G. S., Teerikorpi, P., Valtonen, M. J., Byrd, G. G., & Merafina, M. (2013). Dark energy and the structure of the Coma cluster of galaxies. Astronomy and Astrophysics, 553, A101. https://doi.org/10.1051/0004-6361/201220781

2. Thakur, S. N. (2024). Effective Mass of the Energetic Pre- Universe: Total Mass Dynamics from Effective and Rest Mass. ResearchGate (378298896), https://www.researchgate.net/publication/378298896. https://doi.org/10.13140/RG.2.2.18182.18241

3. Thakur, S. N. (2024). Mass and Effective Mass: Matter, Gravitating Mass, and Dark Energy Impacts. In Extended Classical Mechanics: Negative Effective Mass and Acceleration Boost in Motion and Gravitational Dynamics (p. https://www.researchgate.net/publication/381254461). ResearchGate (381254461). 


29 August 2024

The Dominance of Negative Gravitating Mass in Gravitational Dynamics: An Analysis of Dark Matter's Role and the Limitations of General Relativity.


Soumendra Nath Thakur
ORCiD: 0000-0003-1871-7803
29-08-2024

Keywords: Negative Gravitating Mass, Dark Matter, Effective Mass, Gravitational Dynamics, General Relativity

Key Finding:

Negative Gravitating Mass: The equation Mɢ = Mᴍ + Mᵉᶠᶠ is used to represent the relationship between gravitational mass (Mɢ), total matter mass including dark matter (Mᴍ), and effective mass (Mᵉᶠᶠ). In this equation:

Mᴍ denotes the combined mass of both ordinary matter and dark matter.
Mᵉᶠᶠ represents the effective mass, which can be either positive or negative depending on the influence of various forces and conditions.

When the effective mass (Mᵉᶠᶠ) is negative and its magnitude exceeds the total matter mass (Mᴍ)  the gravitational mass Mɢ becomes negative (i.e., Mɢ < 0). This results in negative gravitating mass, leading to repulsive gravitational effects. Thus, the dominance of negative effective mass over the combined mass of matter and dark matter (Mᴍ) contributes to the observed accelerated expansion of the universe.

Analysis:

Our research demonstrates that dark matter plays a pivotal role in shaping the gravitational dynamics of the universe. By incorporating dark matter into the total matter mass (Mᴍ), and considering the influence of negative effective mass (Mᵉᶠᶠ), we observe that the negative gravitating mass Mɢ becomes dominant. This dominance leads to repulsive gravitational effects, significantly contributing to the accelerated expansion of the universe.

Limitations of General Relativity:

The observed accelerated expansion challenges the predictions of general relativity. Our findings suggest that traditional models may be inadequate to fully explain cosmic expansion, necessitating the introduction of concepts such as dark energy and negative effective mass. This highlights the need for an extended framework beyond general relativity to better understand and describe the dynamics of the universe.

Conclusion:

In this study, we have elucidated the role of negative gravitating mass within the framework of gravitational dynamics and highlighted the significant contribution of dark matter to this phenomenon. The equation Mɢ = Mᴍ + Mᵉᶠᶠ provides a comprehensive understanding of how gravitational mass (Mɢ) relates to the combined matter mass (Mᴍ) and effective mass (Mᵉᶠᶠ). Our analysis reveals that when the effective mass is negative and exceeds the matter mass, the resulting negative gravitating mass leads to repulsive gravitational effects. This contributes notably to the observed accelerated expansion of the universe.

Our findings underscore the pivotal role of dark matter in shaping the universe's gravitational dynamics, emphasizing the necessity to incorporate negative effective mass into our models. Additionally, the limitations of general relativity in explaining the accelerated expansion suggest that an extended theoretical framework is required. Concepts such as dark energy and negative effective mass must be considered to achieve a more comprehensive understanding of cosmic evolution. This study advances the dialogue on the need for revised or new theoretical approaches to better describe and predict the dynamics of our universe.

The Role of Dark Matter in Gravitational Dynamics:

Soumendra Nath Thakur
ORCiD: 0000-0003-1871-7803
29-08-2024

Abstract: 

This study explores the interplay between dark matter and negative gravitating mass, investigating their combined influence on the accelerated expansion of the universe. Our analysis reveals that when the effective mass, including dark matter contributions, exceeds matter mass, negative gravitating mass becomes dominant, leading to repulsive gravitational effects.

Key Findings:

Negative Gravitating Mass: The dominance of negative effective mass over matter mass results in negative gravitating mass (Mɢ < 0).

Repulsive Gravity: Negative gravitating mass generates repulsive gravitational effects, contributing to the accelerated expansion of the universe.

Dark Matter's Role: While the nature of dark matter remains uncertain, its gravitational influence contributes to the overall effective mass, impacting the dominance of negative gravitating mass.

Limitations of General Relativity: The observed accelerated expansion challenges the predictions of general relativity, necessitating the introduction of concepts like dark energy and negative effective mass.

Conclusion: 

Our research demonstrates that dark matter plays a pivotal role in shaping the gravitational dynamics of the universe. By incorporating dark matter into the total matter mass (Mᴍ), and considering the influence of negative effective mass (Mᵉᶠᶠ), we observe that the negative gravitating mass Mɢ becomes dominant. This dominance leads to repulsive gravitational effects, significantly contributing to the accelerated expansion of the universe.

#DarkMatter, #NegativeGravitatingMass, #AcceleratedExpansion,

Generation of Dark Energy in the Universe: Dominance in Gravitational Dynamics


Soumendra Nath Thakur
ORCiD: 0000-0003-1871-7803
29 August 2024


The Dark Energy is Generated When Mᵉᶠᶠ>Mᴍ, Gravitating Mass Mɢ<0 Dominates the Gravitational Universe!


Mɢ = Mᴍ + Mᵉᶠᶠ 

The relationship between different types of mass in the context of dark energy and gravitational dynamics in the universe.. 

The interpretation:

• Mɢ represents the gravitating mass. This is the mass that contributes to the gravitational effects we observe in the universe.
• Mᴍ represents the matter mass. This is the conventional mass associated with matter in the universe, such as stars, planets, and galaxies.
• Mᵉᶠᶠ represents the effective mass. This term could be associated with the influence of forces or energy, such as dark energy, on the system.

• The equation Mɢ = Mᴍ + Mᵉᶠᶠ suggests that the gravitating mass (Mɢ) is the sum of the matter mass (Mᴍ) and the effective mass (Mᵉᶠᶠ).

The second part of the statement asserts that dark energy is generated when the effective mass (Mᵉᶠᶠ) exceeds the matter mass (Mᴍ). This implies that the contribution of dark energy (or the forces and phenomena it represents) becomes significant when it dominates over the conventional matter mass.

Finally, gravitating mass (Mɢ) being less than zero (Mɢ < 0) indicates that this total mass (including both matter and effective mass) dominates the gravitational behavior of the universe. When the gravitating mass is negative, it suggests that gravity may exhibit repulsive characteristics, contributing to the structure and dynamics of the universe in a way influenced by dark energy.

In summary, the statement highlights a scenario where dark energy, represented by the effective mass, plays a dominant role in the gravitational dynamics of the universe when it exceeds the contribution from ordinary matter, especially under conditions where the gravitating mass is negative (Mɢ < 0), potentially leading to repulsive gravitational effects.