15 May 2024

Definition: Effective Mass.

Soumendra Nath Thakur
ORCiD: 0000-0003-1871-7803

15-05-2024

Effective Mass:

The term 'effective mass' (mᵉᶠᶠ) delineates the variability of inertial mass or rest mass and its influence on mass-energy equivalence. It denotes a purely energetic state, governed by kinetic energy, which correlates with kinetic energy (KE). Alterations in effective mass (mᵉᶠᶠ) do not represent actual shifts in mass, but rather perceived changes resulting from the kinetic energy within the system.


*-*-*-*-*
The concept of 'effective mass' does not actually fit into Einstein's theory of gravity, as Einstein promoted 'relativistic mass'. Rather the reality is that 'relativistic mass' should actually fit into 'effective mass' as explained by other branches of science even before Einstein.

Relativistic Mass versus Effective Mass:
The concept of relativistic mass can be understood as an effective mass. The original equation, m′ = m₀/√{1 - (v²/c²)} - m₀, is analysed within the context of special relativity, revealing that m′ takes on an energetic form due to its dependence on the Lorentz factor. The unit of m′, denoted in Joules (J), emphasizes its nature as an energetic quantity. The brief connection between relativistic mass (m′) and m′ being equivalent to an effective mass (mᵉᶠᶠ) highlights the distinctions between relativistic mass and rest mass (m₀), as m′ is not considered an invariant mass. To illustrate this, a practical example involving an 'effective mass' of 0.001 kg (mᵉᶠᶠ = 0.001kg) demonstrates the application of E = m′c², resulting in an actual energy of 9 × 10¹³ J. This uncovers the effective energy as a function of relativistic mass within the framework of special relativity.
*-*-*-*-*
Definitive Description:
Effective mass (mᵉᶠᶠ) is a concept in physics that represents the mass of a particle when taking into account not only its inertial properties but also the influence of external forces, such as gravitational or electromagnetic fields, as well as kinetic energy. It is particularly useful in scenarios where the behaviour of the particle is affected by its motion and the surrounding environment, such as in relativistic mechanics or within certain materials where interactions between particles alter the apparent mass.

Example:
Consider a 10-gram object accelerating to 1% of the speed of light (approximately 2997924.58 m/s). The object's effective mass can be determined by accounting for the kinetic energy and any resultant relativistic effects.

Given Values: Inertial mass (m): 10 grams = 0.01 kg Velocity (v): 2997924.58 m/s (0.01c) Time (t): 10000 seconds Calculation Steps: 1. Calculate Acceleration: a = v/t = (2997924.58 m/s)/(10000 s) = 299.792458 m/s² 2. Calculate Force: F = m·a = 0.01 kg × 299.792458 m/s² = 2.99792458 N 3. Effective Mass Calculation: mᵉᶠᶠ = F/a = 2.99792458 N/299.792458 m/s² = 0.01 kg In this example, the effective mass (mᵉᶠᶠ) is equal to the inertial mass (m) because the acceleration is uniform, and the relativistic effects are minimal at 1% of the speed of light. Thus, mᵉᶠᶠ = 0.01kg.
The effective mass concept helps us understand that the mass of an object can appear different when influenced by external forces or when moving at significant velocities. In this example, the effective mass remains the same as the inertial mass under the given conditions, indicating no additional relativistic effects are altering the mass. However, in more complex scenarios or higher velocities, the effective mass could differ significantly, illustrating the dynamic nature of mass in various physical contexts. This concept is crucial in fields like particle physics, astrophysics, and materials science, where understanding the interplay between motion, forces, and mass is essential for accurate predictions and analyses.
Interpretation:

*-*-*-*-*

The concept of effective mass (mᵉᶠᶠ) represents the mass of a particle considering not only its inertial properties but also the influence of external forces, such as gravitational or electromagnetic fields, and kinetic energy. It is particularly useful in scenarios where the particle's behavior is influenced by motion and the surrounding environment, where interactions between particles alter the apparent mass, without nuclear reactions or changes within the object materials.

The concept of effective mass (mᵉᶠᶠ) is introduced in the context of classical mechanics and kinetic energy. This idea finds support in the research paper titled "Dark energy and the structure of the Coma cluster of galaxies" by A. D. Chernin, et al. The paper explores the implications of dark energy on the foundational principles of Newtonian mechanics within galaxy clusters, investigating the behavior of celestial entities. The findings suggest that dark energy influences the dynamics of galaxy clusters, challenging and expanding our understanding of classical mechanics. In this context, it is valid to interpret effective mass in terms of kinetic energy, particularly when considering the influence of external forces and the motion of celestial bodies within these clusters. Therefore, it is accurate to assert that the concept of effective mass, as used in the study of galaxy clusters and dark energy, is closely related to kinetic energy.

Analysing Newton's second law of motion reveals that when the potential energy of inertial mass (m) decreases due to the application of force and corresponding acceleration, an equivalent kinetic energy is generated, which can be represented as effective mass (mᵉᶠᶠ). This means the inertial mass (m) can be viewed in terms of the object's kinetic energy (KE), which is represented as effective mass (mᵉᶠᶠ). Thus, the expression of total energy (Eᴛᴏᴛ) becomes the sum of inertial mass (m) and effective mass (mᵉᶠᶠ), expressed as:
Eᴛᴏᴛ = m + mᵉᶠᶠ
where the inertial mass (m) and effective mass (mᵉᶠᶠ) represent the potential energy (PE) of the inertial mass (m) and the kinetic energy (KE) due to the motion of the effective mass (mᵉᶠᶠ), respectively.

14 May 2024

Analysis: The concept of Relativistic Lorentz Transformation and Time Dilation.

Soumendra Nath Thakur
14-05-2024

The Lorentz factor (γ) is a velocity-dependent concept that quantifies the changes in time, length, and mass for objects in motion relative to an observer at rest. At the start of a journey, both the object and the observer are at rest, with their kinetic energies (KE) being zero. As the object accelerates to achieve its desired velocity, the Lorentz factor does not directly account for this acceleration process. However, classical mechanics states that as the object accelerates, its mass remains constant, and the force required to accelerate it increases linearly with its mass.

As the object accelerates, its kinetic energy (KE) increases, which is directly proportional to the square of the velocity (v). This increase in KE is due to the addition of effective mass (mᵉᶠᶠ) to the inertial mass (m). Effective mass represents the kinetic energy (KE) of the object, and the total mass experienced by the object becomes (m + mᵉᶠᶠ), contributing to the sensation of heaviness as long as there is an acting force on the object.

Piezoelectric accelerometers empirically demonstrate the concept of effective mass (mᵉᶠᶠ), which accounts for the kinetic energy response to applied forces or accelerations. This validates the concept of effective mass in practical applications where the response of the accelerometer to external forces or accelerations is crucial.

The Lorentz factor (γ) comes into play once the object reaches its desired velocity and is in motion relative to the observer. At this point, the object's energetic state reflects its motion, and the object has kinetic energy (KE) due to its velocity.

The Lorentz transformation, which describes relativistic effects on time, length, and mass for objects in motion, does not directly account for acceleration. Classical mechanics handles acceleration dynamically, but the Lorentz transformation's failure to address acceleration highlights a gap in its applicability, especially in situations where acceleration is crucial. This highlights the need for a more comprehensive theoretical framework that integrates relativistic effects with dynamic processes for a more accurate depiction of physical phenomena.

13 May 2024

Total Energy of the System of Massive Bodies:

Soumendra Nath Thakur
0000-0003-1871-7803

13-05-2024

Definition: The term 'effective mass' (mᵉᶠᶠ) delineates the variability of inertial mass or rest mass and its influence on mass-energy equivalence. It denotes a purely energetic state, governed by kinetic energy, which correlates with kinetic energy (KE). Alterations in effective mass (mᵉᶠᶠ) do not represent actual shifts in mass, but rather perceived changes resulting from the kinetic energy within the system.

The total energy (Eᴛᴏᴛ) of a system of massive bodies is the sum of their potential energy (PE) and kinetic energy (KE), expressed as Eᴛᴏᴛ = PE + KE. In classical mechanics, potential energy arises from the gravitational interaction of the bodies and is given by PE = mgh, where m is the mass of the body, g is the acceleration due to gravity, and h is the height. Kinetic energy, on the other hand, stems from the bodies' motion and is defined as KE = 0.5 mv², where v is the velocity of the body. 

In classical mechanics, inertial mass remains invariant, and there is no conversion between inertial mass (m) and effective mass (mᵉᶠᶠ). Effective mass is purely an energetic state, influenced by kinetic energy, which aligns with KE. The relationship between force (F) and acceleration (a) (F ∝ a) is inversely proportional to mass (m), where a∝1/m. However, changes in effective mass (mᵉᶠᶠ) are not real changes in mass but apparent changes due to the kinetic energy of the system.

For example, when a person experiences a change in weight while ascending or descending in an elevator, their actual mass (m) remains constant, but they feel heavier or lighter due to changes in effective mass caused by the acceleration of the elevator. Similarly, when a person sitting in a moving vehicle experiences external forces due to acceleration or deceleration, their actual mass remains unchanged, but their effective mass varies due to the kinetic energy of the vehicle.

Therefore, effective mass is attributed to the gain or loss of kinetic energy of massive bodies, including persons, and this kinetic energy is equivalent to effective mass.

The discussion emphasizes the compatibility of classical mechanics with relativistic transformations, particularly concerning the relationship between mass and acceleration. By incorporating the effects of kinetic energy on the effective mass of an object, classical mechanics can extend its applicability to relativistic contexts.

Furthermore, considering the broader implications of force-mass dynamics in various contexts, such as accelerometers and piezoelectric materials, demonstrates the versatility of classical mechanics in describing object behaviour under different forces and conditions, including relativistic effects.

The acknowledgment of relativistic effects on effective mass underscores the importance of considering mass-energy equivalence principles in classical elucidations of dynamics. By recognizing the contribution of kinetic energy to the overall mass of an object, classical mechanics can provide a more comprehensive understanding of object behaviour at relativistic speeds.

12 May 2024

Cosmic Horizon: Insights into Light's Journey and Observational Limits

Soumendra Nath Thakur
0000-0003-1871-7803
12-05-2024

The speed of light in gravitationally bound systems defines the maximum distance between the source and reception of light. However, this limit doesn't necessarily dictate the maximum distance we can observe, as light from far away can still reach us. The concept of a maximum distance due to the speed of light may be unclear, as we can observe objects beyond the distance created by the speed of light. The particle horizon represents the maximum distance light could have reached us since the beginning of the universe, which changes over time as the universe expands.

The particle horizon, also known as the cosmic light horizon, is the maximum distance light emitted by particles could reach an observer over the universe's age. It represents the conformal time, the time it would take for a photon to travel from our location to the farthest observable point, assuming the universe's expansion ceases. Although it lacks physical significance, the particle horizon holds conceptual importance as a measure of distance, as it moves farther away as time elapses and conformal time increases. The proper distance at any given time is equal to the comoving distance multiplied by the scale factor.

Gravity dominates over vast distances, however, photon's diminishing energy becomes accountable, as photon travels out of a gravitational well, but beyond the gravitational influence over vast distances the lengthening of photon's wavelength becomes another consideration due to the expansion of cosmic distance.

Though gravity dominates over vast distances but the attractive force, called gravity, does not extend beyond zero gravity spheres of galactic clusters. The Newton's Law of Universal Gravitation conveys that the force of gravity on one mass due to another mass depends on their separation r according to the dependence 1/r². This also conveys the fact that when the distance between two objects increases, the force of gravity decreases, where r = distance (d).

Therefore photons diminishing its energy as it travels out of a gravitational well. The applicable mathemetical relationship expressed as (E = hΔf). Beyond the gravitational influence over vast distances, the photons continue in lengthening its wavelength within the cosmic expansion. Beyond a threshold distance, which is much more distant than gravitational influence and the influence of the the cosmic expansion combined, photon frequency reaching beyond the detectable radio frequency. The applicable mathemetical relationship expressed as λ ∝ 1/f where λ → ∞, f → 0.

The Doppler's redshift of photons (presented as z=v/c, specifically fʀᴇᴄᴇɪᴠᴇᴅ=√{(c-v)/(c+v)}*fꜱᴏᴜʀᴄᴇ) apply everywhere, it applies to the spatial distance as a result of motion, {presented at  d=cΔt, since, T(λ)received/T(λ)source = ± t(λ)source}. 

Where, in the absence of gravitational effects (absence of inertial mass) photons have no gravitational redshift; also known as Einstein's redshift. Beyond the sphere gravitational influence of galactic or galaxy clusters, especially in intergalactic space, dark energy rules and results in cosmic redshift. The redshift of photons collectively is called Doppler redshift, irrespective of the gravitational and cosmic redshifts. This can be determined as a whole.

The Doppler redshift of photon, due to the collective reasons, is the photon's wavelength (λ) within reasonable redshift value, but beyond a threshold distance, when the photons are nolonger able to travel at c or maintain a reasonable wavelength, photon's detection becomes impossible. As per the mathemetical interpretation the equation c = λf determines photons constant speed. 

Determining Doppler's redshift by using the Doppler formula, when λ ∝ 1/f, λ in detectable range, c = constant, this should calculate a consistent distance commensurate to the change in wavelength between reception and source and the elapsed time in between. Beyond this threshold, when λ is absurdly high and the f is absurdly low, the relationship λ ∝ 1/f where  λ → ∞, f → 0, and so c ≠,< fλ, the constancy of c is broken, photon frequency reaching beyond the detectable radio frequency, and so the photon can no longer travel either at c or detectable wavelength λ, and so the detection of photons beyond a threshold distance becomes impossible. Therefore, the limit of our visible distance is more when the photon is no longer able to travel at c, or λ → ∞ or, f → 0, than a signal travelling faster than light. 

#visibledistance #dopplerredshift #gravitationalredshift #cosmicredshift

11 May 2024

My interpretation of the photon's redshift based on empirical science:

Soumendra Nath Thakur
0000-0003-1871-7803

11-05-2024

The Doppler redshift applies everywhere, it applies to spatial distance as a result of motion.

In the absence of gravitational effects (absence of inertial mass) photons have no gravitational redshift, also known as Einstein's redshift, especially in intergalactic space where dark energy influences the effect.

The redshift of photons in the absence of gravitational effects is called the cosmic redshift or Hubble redshift, especially in intergalactic space where the influence of dark energy dominates.