Time serves as a measurement to quantify changes in material reality. The SI unit of time is the second, defined by measuring the electronic transition frequency of caesium atoms. Time is also one of the seven fundamental physical quantities in both the International System of Units (SI) and the International System of Quantities.
From a physics perspective, time is typically defined by its measurement: it is what a clock reads. Thus, time is viewed as a fourth-dimensional consideration — a concept rather than a tangible entity. While existence and events occupy three-dimensional space, time is thought to reside in a fourth dimension.
Furthermore, time and space differ not only in their characteristics but also in their dimensions. Time belongs to an imperceptible hyper-dimension, while space exists in the perceptible three dimensions. Due to this dimensional difference, they cannot form an alliance. Anything beyond the three dimensions of space is unreachable for us, including the dimension of time.
This leads to a pertinent question: “If time is not directly reachable, then what is the time that a clock reads?”
A scientific answer to this question is that cosmic time is defined as the abstract progression of real existence and events. Therefore, the time read by a clock is a physical manifestation of cosmic time through a standardized frequency count, as per the SI standard. Clock time represents a near approximation of cosmic time, manifested in the order of cosmic time. However, there is always a distortion between real time (as indicated by a clock) and conceptual time (cosmic time), primarily due to the effects of gravitational influence.
Gravity affects mass or energy, resulting in a distortion of the oscillation rate of clocks. Consequently, a clock's time is influenced by gravity, while abstract cosmic time remains unaffected by events, maintaining a uniform succession relative to existential events.
Clocks are designed to represent a uniform manifestation of real time by maintaining standardized frequencies, but gravity affects the uniform progression of time in clock mechanisms by altering their oscillation. This necessitates periodic adjustments in oscillation to ensure consistency, even for atomic clocks, which require daily automatic adjustments.
In conclusion, time is an abstract concept, whereas clock time is a real manifestation of this abstraction, approximated and subject to distortion by external influences like gravity.