28 September 2024

Distinct Domains of Kinetic Energy in Extended Classical Mechanics:


Soumendra Nath Thakur
ORCiD: 0000-0003-1871-7803
28-09-2024

Keywords: Mechanical Kinetic Energy, Relativistic Kinetic Energy, Negative Apparent Mass, Gravitational Dynamics, Dark Energy

Introduction
In the framework of extended classical mechanics, mechanical and relativistic kinetic energies operate within distinct physical domains. Mechanical kinetic energy governs motion and gravitational dynamics on the macroscopic scale, while relativistic kinetic energy operates under the mass-energy equivalence principle at the microscopic, nuclear scale. This distinction highlights the need to consider these two types of kinetic energy as fundamentally different, each playing a critical role in unique contexts.

Mechanical Kinetic Energy vs. Relativistic Kinetic Energy:
Mechanical kinetic energy primarily influences motion and gravitational dynamics in large-scale physical systems, integrating classical concepts such as deformation of matter and relativistic Lorentz transformations. It is crucial in describing systems like planets, stars, and galaxies, where gravitational forces dominate. In contrast, relativistic kinetic energy pertains to high-energy processes within atomic nuclei, governed by the mass-energy equivalence principle. Its relevance is primarily in systems involving nuclear reactions, where mass-energy conversion takes place independently of macroscopic motion and gravitational effects.

These two forms of kinetic energy are thus applicable in different domains: 
Mechanical kinetic energy for macroscopic systems, and relativistic kinetic energy for nuclear, microscopic processes. Although both types of kinetic energy involve mass, the limitations of relativistic kinetic energy become apparent when addressing phenomena like dark matter, which mechanical kinetic energy can account for in large-scale gravitational dynamics.

Negative Apparent Mass and Effective Mass Dynamics:
Negative apparent mass plays a significant role in gravitationally bound systems, impacting both local and cosmic scales. The effective mass in such systems can be either positive or negative, depending on the magnitude of the negative apparent mass. When the negative apparent mass outweighs the total matter mass (including dark matter), the effective mass becomes negative. This dynamic is crucial in understanding motion and gravitational interactions, particularly in cosmic scales where dark energy dominates.

On intergalactic scales, negative apparent mass is directly equivalent to the negative effective mass of dark energy, which is inherently negative. In dark energy-dominated regions of the universe, this negative mass exerts a repulsive force, influencing the expansion and large-scale structure of the cosmos. Dark energy's negative mass is a key factor in cosmic acceleration and is essential in understanding the overall gravitational dynamics of the universe.

Incompatibility of Classical and Relativistic Kinetic Energy Integration:
While both classical and relativistic kinetic energies share the concept of mass, integrating them into a single framework is not feasible due to their distinct applicability. Classical kinetic energy involves macroscopic motion and gravitational dynamics, while relativistic kinetic energy is confined to the nuclear scale, focusing on mass-energy equivalence. Furthermore, relativistic kinetic energy is limited in addressing the mass of dark matter within microscopic nuclear systems, where classical kinetic energy provides a more comprehensive understanding of motion and gravitational interactions.

Conclusion
The distinct domains of mechanical and relativistic kinetic energy underscore the need for a clear separation in their application. Mechanical kinetic energy, including the effects of negative apparent mass, governs macroscopic motion and gravitational dynamics. In contrast, relativistic kinetic energy governs nuclear mass-energy conversion without addressing gravitational effects or dark matter. As extended classical mechanics evolves, these distinctions become increasingly important for developing a unified understanding of energy, mass, and gravitational dynamics across both local and cosmic scales.

No comments: