17 July 2024

The names 'quanta' and 'photon' :

Quanta
Before 1900, the term "quanta" (singular "quantum") was used to describe particles or amounts of various quantities, including electricity. The significant shift in its usage came in 1900 when the German physicist Max Planck was studying black-body radiation. Planck suggested that experimental observations, especially at shorter wavelengths, could be explained if the energy within a molecule was a "discrete quantity composed of an integral number of finite equal parts," which he termed "energy elements."

In 1905, Albert Einstein built upon Planck's idea while studying light-related phenomena such as black-body radiation and the photoelectric effect. Einstein proposed that these phenomena could be better explained by modelling electromagnetic waves as consisting of spatially localized, discrete wave-packets. He called these wave-packets "light quanta."

Photon
The term "photon" derives from the Greek word for light. It was initially suggested as a unit related to the illumination of the eye and the resulting sensation of light. This term was used in a physiological context by several scientists:

1916: American physicist and psychologist Leonard T. Troland.
1921: Irish physicist John Joly.
1924: French physiologist René Wurmser.
1926: French physicist Frithiof Wolfers.

Although Wolfers's and Lewis's theories were contradicted by many experiments and not widely accepted, the term "photon" gained popularity. Arthur Compton used "photon" in 1928, referring to Gilbert N. Lewis, who coined the term in a letter to Nature on 18 December 1926. Despite earlier uses of the term, it was Lewis's coinage that became widely adopted among physicists.

13 July 2024

William Thomson (Lord Kelvin) (1824-1907)

Contributions:

1. Thermodynamics:

• Absolute Temperature Scale (Kelvin Scale):

• Description: He introduced the absolute temperature scale, which is now called the Kelvin scale. It starts at absolute zero, the point where all molecular motion ceases.

• Second Law of Thermodynamics:

• Description: He made significant contributions to the second law of thermodynamics, particularly in defining the concept of absolute zero and understanding the direction of heat transfer.

2. Electromagnetism:

• Description: Thomson worked on the mathematical analysis of electricity and magnetism, which contributed to the later development of Maxwell's equations.

3. Transatlantic Telegraph Cable:

• Description: He played a pivotal role in the laying of the first successful transatlantic telegraph cable. His work on signal transmission and attenuation was critical for this achievement.

4. Kelvin's Circulation Theorem:

• Description: This theorem in fluid dynamics states that the circulation around a closed curve moving with the fluid remains constant over time.

Both Daniel Bernoulli and William Thomson (Lord Kelvin) made ground breaking contributions to physics and mathematics, laying foundational principles that are still widely used today.

Daniel Bernoulli (1700-1782)

Contributions:

1. Bernoulli's Principle:

• Description: It explains how the speed of a fluid (liquid or gas) relates to its pressure. As the speed of the fluid increases, the pressure within the fluid decreases.
• Applications: This principle is fundamental in aerodynamics and is used to explain how airplane wings generate lift.

2. Kinetic Theory of Gases:

• Description: Bernoulli was one of the first to propose that gases are made up of numerous small particles in rapid, random motion. This theory laid the groundwork for the development of statistical mechanics.

3. Hydrodynamics:

• Description: He wrote "Hydrodynamica," where he formulated and applied the principles of fluid dynamics. His work provided the basis for the field of fluid mechanics.

4. Bernoulli's Equation:

• Description: It is a mathematical statement of Bernoulli's principle, relating the pressure, velocity, and height in steady, incompressible flow along a streamline.

Both Daniel Bernoulli and William Thomson (Lord Kelvin) made ground breaking contributions to physics and mathematics, laying foundational principles that are still widely used today.

Schwarzschild Radius

12-07-2024

The Schwarzschild radius is a measure used in the context of black holes, representing the radius of the event horizon. The event horizon is the boundary beyond which nothing, not even light, can escape the gravitational pull of a black hole.

Equation for Schwarzschild Radius

The Schwarzschild radius (rₛ) is given by the formula:

rₛ = 2GM/c²

Where:

• G is the gravitational constant (6.67430 × 10⁻¹¹ m³ kg⁻¹ s⁻²)
• M is the mass of the object
• c is the speed of light in a vacuum (3 × 10⁸ m/s)

Description

• Gravitational Constant (G): This is a fundamental constant that quantifies the strength of gravity in Newton's law of universal gravitation.
• Mass (M): The mass of the object for which we are calculating the Schwarzschild radius.
• Speed of Light (c): The speed at which light travels in a vacuum.

The Schwarzschild radius is significant because it provides a boundary around a black hole. If an object is compressed within this radius, it will form a black hole. For instance, the Schwarzschild radius for Earth is about 9 millimetres, meaning if you could compress all of Earth's mass into a sphere with a radius of 9 millimetres, it would become a black hole.

Explanation

The Schwarzschild radius calculated using relativistic principles approximately equals the Planck length when the mass involved is on the order of the Planck mass. This connection highlights the scale at which quantum effects and gravitational considerations become significant, as envisioned by Max Planck's work.

• Relativistic Principles: The Schwarzschild radius is derived from Einstein's theory of General Relativity, which provides a relativistic description of gravity.
• Planck Length: The Planck length (ℓp) is the scale at which quantum gravitational effects are believed to become significant. It is approximately 1.616 × 10⁻³⁵ meters.
• Planck Mass: The Planck mass (mᴘ) is the mass scale at which quantum gravitational effects are expected to be important. It is approximately 2.177 × 10⁻⁸ kilograms.

When substituting the Planck mass into the Schwarzschild radius equation:

rₛ = 2Gmᴘ/c²

Given that G = 6.67430 × 10⁻¹¹ m³ kg⁻¹ s⁻² and c = 3 × 10⁸ m/s

rₛ = 2 × 6.67430 × 10⁻¹¹ × 2.177 × 10⁻⁸/(3 × 10⁸)²

This yields a radius on the order of the Planck length (ℓp = 1.616 × 10⁻³⁵ meters).

Significance

This relationship shows that at the Planck scale, both quantum mechanical and relativistic gravitational effects are significant. Max Planck introduced these fundamental units to describe the scales where the effects of quantum gravity cannot be ignored. This is why the Planck length is often considered the smallest meaningful length scale, and the Planck mass represents the mass at which a particle's Schwarzschild radius is comparable to its Compton wavelength.

12 July 2024

Exploring Minimum Radius and Gravitational Dynamics: A Critical Analysis of Mr. Berndt Barkholz's Propositions

11-07-2024

Abstract:
This study examines Mr. Berndt Barkholz's propositions concerning the minimum radius rₘᵢₙ = Gm/c² associated with a mass m where gravitational effects dominate. It discusses the orbital velocity condition v₀ = √Gm/r < c, highlighting its critical role in orbital mechanics and gravitational parameters. The derivation of rₘᵢₙ = Gm/c² is explored, emphasizing its significance in delineating regions of profound relativistic effects. The challenges in determining R or rₘᵢₙ  without external references like the Planck scale are addressed, emphasizing the need for specific observational or theoretical constraints. Furthermore, the paper evaluates the relationship m = 1.349×10²⁷ × rₘᵢₙ  proposed by Mr. Barkholz, urging for empirical or theoretical validation of m or rₘᵢₙ to substantiate claims about the smallest possible radius in gravitational theory. This analysis underscores the relevance and essentiality of Planck units, particularly when R < ℓᴘ, where ℓᴘ/tᴘ > vᴀᴠɢₘₐₓ > c.

Dear Mr. Berndt Barkholz,

Thank you for your detailed exploration of the minimum radius  and its implications for gravitational dynamics. Your approach provides a thought-provoking perspective that challenges conventional interpretations.

1. Minimum Radius rₘᵢₙ: You proposed rₘᵢₙ = Gm/c² as the smallest radius associated with a mass m, where gravitational effects dominate.

2. Orbital Velocity Condition: Your discussion on the orbital velocity condition v₀ = √Gm/r < c underscores the critical relationship between orbital mechanics and gravitational parameters. (R < Gm/c²).

3. Deriving rₘᵢₙ: From the orbital velocity condition, we derived rₘᵢₙ = Gm/c², highlighting its significance in delineating regions where relativistic effects become profound.

4. Finding R or rₘᵢₙ: Determining R or rₘᵢₙ without external references like the Planck scale requires specific observational or theoretical constraints pertinent to the physical system in question.

5. Determining m: Once R or rₘᵢₙ is established, m can be computed using rₘᵢₙ = Gm/c², adhering strictly to gravitational dynamics rather than external theoretical scales.

Acknowledging the rationality of your approach, it remains essential to substantiate the proposed relationship m = 1.349×10²⁷ × rₘᵢₙ  with empirical or theoretical values for either m or rₘᵢₙ. This clarity is crucial for validating the assertion that rₘᵢₙ represents the smallest possible radius without recourse to external scales.

Critical Consideration:
In the context of your analysis, it is important to note that Planck units are indeed relevant and essential, especially when considering the condition R < Lp. In such a scenario, the relationship ℓᴘ/tᴘ > vᴀᴠɢₘₐₓ > c becomes significant, where c = 3 × 10⁸ m/s.

In conclusion, your contributions open avenues for deeper exploration into gravitational theory. Clarifying the values of m or rₘᵢₙ would strengthen the scientific basis of your hypothesis and its implications for our understanding of gravitational phenomena.

Best regards,
Soumendra Nath Thakur