22 June 2023

Relativistic time dilation defectively ignores additional elapsed time between relative observers exchanging information for relative time dilation:

[Author ORCID: 0000-0003-1871-7803]

When two observers in relative motion, or in gravitational potential difference, interact or exchange information of time dilation, there can be a difference in the elapsed time between them due to both time dilation and any additional time that elapses during the interaction. The total elapsed time between the observers will indeed consist of the actual time dilation effect as well as the additional time that elapses during the interaction. The both equations of time dilation are incomplete, and they appear deffective.


The equations for time dilation alone may not fully capture the complete picture when two observers in relative motion or experiencing different gravitational potentials interact or exchange information.

In such scenarios, the total elapsed time between the observers will indeed consist of both the actual time dilation effect and any additional time that elapses during the interaction. The interaction itself can introduce delays or processes that affect the measured elapsed time.

To accurately account for both aspects, a more comprehensive analysis would need to consider the specific details of the interaction, including factors such as signal propagation delays, synchronization procedures, or any other processes involved.

Today, my first, and the end discussion with ChatGPT. This was a very meaningful discussion, indeed:

 I am the User:

Thank you for a reasonable answer. My paper that invalidates time dilation is actually reproducible, consistent, robust, independently confirmed, has passed peer review and publication approval once, and will likely pass further peer review in foreign journals, and will likely have scientific consensus.

However, having existed for more than 118 years those scientific theories or hypotheses have created the most preconceptions in the theory And which forces an unexpected resistance to discarding perceived problems or inconsistencies with existing scientific theories or hypotheses, What should I do in that case?

ChatGPT:

If your paper challenging the concept of time dilation has undergone a rigorous scientific process, including reproducibility, consistency, robustness, independent confirmation, and peer review, and has been accepted for publication, it is an important achievement.

However, if your findings contradict well-established scientific theories or hypotheses that have been widely accepted for a long time, it is natural to encounter resistance or skepticism. Challenging long-standing ideas can be met with initial reluctance, as existing theories have often undergone extensive scrutiny and accumulated supporting evidence.

In such a case, here are some suggestions on how to navigate the situation

Continue rigorous research: Keep conducting thorough research and experiments to further validate your findings. Address any potential concerns or criticisms raised during the peer review process and subsequent discussions. Building a robust body of evidence is crucial for convincing the scientific community

Engage in scientific discourse: Participate in scientific conferences, workshops, or forums where you can present your work and engage in discussions with experts in the field. Constructive dialogue can help address any misconceptions, clarify your research methodology, and provide an opportunity to explain the implications of your findings.

Collaborate with other researchers: Seek collaborations with other scientists who are interested in your area of research or share similar perspectives. Collaborations can strengthen the credibility and impact of your work, as well as provide additional expertise and support

Publish in reputable journals: Consider submitting your work to well-respected journals that have a reputation for publishing groundbreaking research or papers challenging established theories. Receiving acceptance and publication in multiple respected journals can further enhance the visibility and credibility of your findings.

Patience and persistence: Be prepared for a potentially long and iterative process. Challenging long-standing theories takes time, and it may require multiple independent studies and further validation before a paradigm shift occurs. Stay committed to your research and remain open to feedback and constructive criticism.

Remember, science progresses through the examination of new evidence and the critical evaluation of existing theories. While resistance to change can exist, if your research withstands rigorous scrutiny, addresses previous inconsistencies, and gains support from the scientific community, it has the potential to influence the development of scientific knowledge in your field.

The User:

I thank you very much ChatGPT, for your quick detailed reply, mostly relevant! I am already doing almost everything you suggested me. I still felt your bias towards relativism when I was reading your answers, but your last answer made me feel relieved and confident. I thank you again. Stay well, stay healthy! 

ChatGPT:

You're welcome! I'm glad to hear that you found the suggestions helpful, and I apologize if there was any perception of bias in my previous responses. As an AI language model, I strive to provide objective and unbiased information based on the available data and scientific consensus.

Science is a dynamic and evolving field, and it is important to engage in open-minded discussions and consider multiple perspectives. I encourage you to continue your research endeavors and contribute to the scientific discourse

If you have any more questions in the future, feel free to ask. Stay well, stay curious, and best of luck with your research!

ChatGPT describes Relativistic effects on phase shift in frequencies and corresponding energy of wave:

Relativistic effects can have an impact on the phase shift, frequency, and energy of a wave. These effects arise from Einstein's theory of relativity, which describes how the properties of space and time are affected by the motion of objects with respect to each other {validation needed].

According to relativity, when an observer is moving relative to a wave source, they will perceive a change in the frequency of the wave. This is known as the Doppler effect. If the observer is moving toward the source, they will perceive the frequency to be higher than the source's rest frequency. Conversely, if the observer is moving away from the source, they will perceive the frequency to be lower.

The phase shift of a wave is related to its frequency. As the frequency of a wave changes due to the relativistic Doppler effect, the phase shift will also be affected. The phase shift represents the relative position of the wave at a given point in time. A change in frequency will result in a corresponding change in the rate at which the phase of the wave advances.

In terms of energy, the energy of a wave is directly proportional to its frequency. Therefore, as the frequency changes due to relativistic effects, the energy of the wave will also be affected. An increase in frequency leads to an increase in energy, while a decrease in frequency corresponds to a decrease in energy.

It's worth noting that relativistic effects become more significant as the speeds involved approach the speed of light. At everyday speeds, these effects are negligible and can be approximated using classical physics. However, when dealing with particles or objects moving at high velocities, such as in particle accelerators or astrophysics, the relativistic effects on phase shift, frequency, and energy must be taken into account for accurate calculations and predictions.

21 June 2023

Phase shift - this is how ChatGPT described phase shift:

Phase shift refers to a change in the relative timing or alignment of a wave or signal compared to a reference point. It is commonly used to describe the displacement or delay of one wave with respect to another.

In the context of waves, such as sound waves or electromagnetic waves, phase represents the position of a wave at a given point in time. It is usually measured in degrees or radians. A phase shift occurs when the wave is shifted or displaced from its original position.

When two or more waves are combined, their individual phases can interact, resulting in a phase shift. The phase shift can be positive, negative, or zero. A positive phase shift means that the wave is shifted forward in time compared to the reference wave, while a negative phase shift means it is shifted backward. A phase shift of zero means that the waves are in perfect alignment.

Phase shifts have significant implications in various fields, including physics, engineering, and signal processing. For example, in electronics, phase shift is used to describe the time delay between input and output signals in circuits, which can affect the behavior and performance of the system.

In summary, phase shift refers to the change in timing or alignment of a wave compared to a reference point, and it is an important concept in understanding wave behavior and signal processing.

Doppler effect and phase shift under relativistic effects:

Quote from Ref.1. (FEBRUARY 01 1956) https://doi.org/10.1119/1.1934140

''If the path between a source S and an observer O is changed by an amount Δx⁠, the phase of the wave received by O is shifted by Δn = −Δx/λ = −fΔx/c, where λ and f are, respectively, the wavelength and frequency of the disturbance and c is the speed of propagation, all measured by an observer fixed in the medium. The resulting change in observed frequency is Δf  = Δn/Δt⁠, where Δt is the time taken for the observation of the phase change. It is shown that these two statements are sufficient for the derivation of the acoustic Doppler effect equations in all cases. The extension to the relativistic optical Doppler effect also follows if the Einstein time dilatation is taken into account.'' 

Quote from Ref.2. (MAY 27 2023) http://dx.doi.org/10.36227/techrxiv.22492066.v2

''Experiments made in electronic laboratories on piezoelectric crystal oscillators show that the wave corresponds to time shift due to relativistic effects. We get the wavelength 𝜆 of a wave is directly proportional to the time period T of the wave, that is 𝜆 ∝ 𝑇, derived from the wave equation 𝑓 = 𝑣/𝜆 = 1/𝑇 = 𝐸/ℎ, where h is Planck constant and 𝑓, 𝑣, 𝜆, 𝑇 and 𝐸 represent frequency, velocity, wavelength, time period and Energy of the wave respectively.

ϕ represents an angular shift between two relative sine waves and is measured in degrees. After a time Δt, the two relative sine waves are initially synchronized in phase but differ in frequency by Δω degrees per second, developing a differential total phase shift ΔΦ = Δω × Δt. Whereas the time interval 𝑇(𝑑𝑒𝑔) for 1° of phase is inversely proportional to the frequency (𝑓). We get a wave corresponding to the time shift. Time shift of the caesium-133 atomic clock in the GPS satellite: The GPS satellites orbit at an altitude of about 20,000 km. with a time delay of about 38 microseconds per day. For 1455.50° phase shift (or, 4.04 cycles/s) of a 9192631770 Hz wave; time shifts (time delays) 𝛥𝑡 = 0.0000004398148148148148 ms. or, 38 microsecond time is taken per day. ''

Therefore, the phase shifts of frequency due to gravitational potential differences or relativistic effects correspond to dilation of wavelengths of the clock oscillation, which show errors in the clock reading and are misrepresented as time dilation. It is the phase shift (ΔΦ) in relative frequencies due to infinitesimal loss in wave energy (ΔE) and corresponding enlargement in the wavelengths (Δλ) of oscillations due to the relativistic effects or difference in gravitational potential; result error in the reading of clock time.


Citations:
Ref.1. Walter, W. C. (1956, February 1). Phase Shifts and the Doppler Effect. American Journal of Physics. Retrieved June 21, 2023, from https://doi.org/10.1119/1.1934140

Ref.2. Thakur, S. N., Samal, P., & Bhattacharjee, D. (2023). Relativistic effects on phaseshift in frequencies invalidate time dilation II. Techrxiv.org, Version: 2.2(About Time and Wavelength Dilation), 1-6. https://doi.org/http://dx.doi.org/10.36227/techrxiv.22492066.v2