18 August 2024

On the Scientific Consistency of Effective Mass: A Quasi-Physical Concept in Gravitational Dynamics

" Effective mass (Mᵉᶠᶠ) is a quasi-physical concept that explains how various forms of energy, such as dark energy and potential energy, influence gravitational dynamics and classical mechanics. When effective mass is negative, it is directly related to matter mass (Mᴍ): as the effective mass becomes more negative, the 'apparent' matter mass decreases. Conversely, as the magnitude of the negative effective mass increases (i.e., as Mᵉᶠᶠ becomes more negative), the kinetic energy increases; when the magnitude of the negative effective mass decreases (i.e., Mᵉᶠᶠ becomes less negative), the kinetic energy decreases, and vice versa.".

#effectivemass 


Soumendra Nath Thakur

18-08-2024

The analysis of the research, titled "Effective Mass: A Quasi-Physical Concept and Its Role in Gravitational Dynamics" in the context of the research titled "Dark Energy and the Structure of the Coma Cluster of Galaxies" by A. D. Chernin et al. reveals several key points of interpretational consistency and differences.

Fundamental Concepts of Energy and Mass

The universe fundamentally comprises energy and mass. According to the principle of conservation of energy, energy is neither created nor destroyed but can be transformed from one form to another. This principle, similar to the conservation of mass, is an empirical law supported by experimental observations.

Kinetic and Potential Energy

In the research titled "Dark Energy and the Structure of the Coma Cluster of Galaxies" three types of mass are defined to characterize cosmic structures:

1. Matter Mass (Mᴍ): The mass associated with visible matter in galaxies.
2. Effective Mass of Dark Energy (Mᴅᴇ): A negative mass component representing the influence of dark energy.
3. Gravitating Mass (Mɢ): The total mass influencing gravitational dynamics, calculated as Mɢ = Mᴍ + Mᴅᴇ.

This research uses Newtonian mechanics to model gravitational effects, incorporating both matter mass and dark energy's effective mass. Classical mechanics traditionally does not include the concept of 'effective mass' in relation to gravitational mass. Kinetic energy, associated with motion, affects an object's behaviour but not its physical mass, while potential energy, derived from position or forces, can convert into kinetic energy.

In the context of dark energy, its potential energy contributes to the universe's expansion acceleration. Thus, the gravitating mass related to dark energy can be viewed as potential energy affecting matter mass, leading to kinetic energy generation. This illustrates the conversion of potential energy into kinetic energy.

Reinterpretation of Effective Mass

The research defines gravitating mass as Mɢ = Mᴍ + Mᴅᴇ, with Mᴅᴇ as dark energy's effective mass. This concept can be reframed within classical mechanics as an 'effective mass' Mᵉᶠᶠ representing both kinetic and potential energy. By representing the Newtonian equation for gravitating mass as Mɢ = Mᴍ + Mᵉᶠᶠ, where Mᵉᶠᶠ includes both kinetic and potential energy, we align with classical mechanics principles. This reinterpretation maintains consistency by illustrating the conversion of potential energy into kinetic energy, ensuring the concept of effective mass is coherent across various contexts.

Relativistic Energy Considerations

Effective mass and relativistic energy are distinct concepts. Effective mass pertains to mass-like properties of energy forms such as kinetic, potential, and dark energy, without direct conversion into physical mass. In contrast, relativistic energy involves converting actual mass into a combination of energy and mass, according to the mass-energy equivalence principle.

Chernin et al.'s research does not specifically address relativistic energy but focuses on dark energy, which does not adhere to the mass-energy equivalence equation. This perspective supports the treatment of effective mass, especially dark energy's effective mass, as separate from physical mass and relativistic concepts. The study emphasizes dark energy's role in gravitational dynamics and extends the discussion to other energy forms, such as kinetic and potential energy, within a classical mechanics framework.

Conclusion

The interpretation of effective mass as a quasi-physical concept aligns with Chernin et al.'s research, particularly in how dark energy's effective mass (Mᴅᴇ) is applied to gravitational dynamics. Both approaches treat dark energy's contribution as an influential yet abstract entity. The broader application of effective mass to include kinetic and potential energy, alongside the observed effect of dark energy on the universe's expansion and matter mass, remains scientifically valid. This broader scope maintains consistency with classical mechanics and provides a coherent understanding of mass and energy in cosmic and classical contexts.

No comments: