15 May 2024
The Impact of Acceleration on Kinetic Energy in the Relativistic Lorentz Factor in Motion:
Limitations in the Lorentz Transformation: Integrating Classical Mechanics and Relativity
Soumendra Nath Thakur
ORCiD: 0000-0003-1871-7803
15-05-2024
The Lorentz transformation describes relativistic effects such as time dilation, length contraction, and mass increase as objects approach the speed of light. However, it does not directly account for acceleration. When velocity-dependent Lorentz transformation significantly cannot achieve velocity (v) between the rest frame and an inertial frame in motion without acceleration, it highlights a gap in its applicability. This underscores the need to recognize the importance of incorporating acceleration into the understanding of relativistic effects.
It's worth noting that Lorentz transformation is a final form in science, developed by Mr. Lorentz, and any adjustments to its framework would not be feasible without him. However, considering that the idea of acceleration predated Mr. Lorentz, there's an expectation for the correct accounting of physics, including honouring Isaac Newton's second law, within the Lorentz transformation. While the scientific community did not initially challenge Lorentz transformation for lacking an explanation of acceleration in its calculations, it is crucial to recognize the importance of integrating principles from classical mechanics, such as Newton's second law, to address these limitations.
Definition: Effective Mass.
ORCiD: 0000-0003-1871-7803
Effective Mass:
The term 'effective mass' (mᵉᶠᶠ) delineates the variability of inertial mass or rest mass and its influence on mass-energy equivalence. It denotes a purely energetic state, governed by kinetic energy, which correlates with kinetic energy (KE). Alterations in effective mass (mᵉᶠᶠ) do not represent actual shifts in mass, but rather perceived changes resulting from the kinetic energy within the system.
14 May 2024
Analysis: The concept of Relativistic Lorentz Transformation and Time Dilation.
Soumendra Nath Thakur
14-05-2024
The Lorentz factor (γ) is a velocity-dependent concept that quantifies the changes in time, length, and mass for objects in motion relative to an observer at rest. At the start of a journey, both the object and the observer are at rest, with their kinetic energies (KE) being zero. As the object accelerates to achieve its desired velocity, the Lorentz factor does not directly account for this acceleration process. However, classical mechanics states that as the object accelerates, its mass remains constant, and the force required to accelerate it increases linearly with its mass.
As the object accelerates, its kinetic energy (KE) increases, which is directly proportional to the square of the velocity (v). This increase in KE is due to the addition of effective mass (mᵉᶠᶠ) to the inertial mass (m). Effective mass represents the kinetic energy (KE) of the object, and the total mass experienced by the object becomes (m + mᵉᶠᶠ), contributing to the sensation of heaviness as long as there is an acting force on the object.
Piezoelectric accelerometers empirically demonstrate the concept of effective mass (mᵉᶠᶠ), which accounts for the kinetic energy response to applied forces or accelerations. This validates the concept of effective mass in practical applications where the response of the accelerometer to external forces or accelerations is crucial.
The Lorentz factor (γ) comes into play once the object reaches its desired velocity and is in motion relative to the observer. At this point, the object's energetic state reflects its motion, and the object has kinetic energy (KE) due to its velocity.
The Lorentz transformation, which describes relativistic effects on time, length, and mass for objects in motion, does not directly account for acceleration. Classical mechanics handles acceleration dynamically, but the Lorentz transformation's failure to address acceleration highlights a gap in its applicability, especially in situations where acceleration is crucial. This highlights the need for a more comprehensive theoretical framework that integrates relativistic effects with dynamic processes for a more accurate depiction of physical phenomena.
13 May 2024
Total Energy of the System of Massive Bodies:
Soumendra Nath Thakur
0000-0003-1871-7803
13-05-2024
Definition: The term 'effective mass' (mᵉᶠᶠ) delineates the variability of inertial mass or rest mass and its influence on mass-energy equivalence. It denotes a purely energetic state, governed by kinetic energy, which correlates with kinetic energy (KE). Alterations in effective mass (mᵉᶠᶠ) do not represent actual shifts in mass, but rather perceived changes resulting from the kinetic energy within the system.
The total energy (Eᴛᴏᴛ) of a system of massive bodies is the sum of their potential energy (PE) and kinetic energy (KE), expressed as Eᴛᴏᴛ = PE + KE. In classical mechanics, potential energy arises from the gravitational interaction of the bodies and is given by PE = mgh, where m is the mass of the body, g is the acceleration due to gravity, and h is the height. Kinetic energy, on the other hand, stems from the bodies' motion and is defined as KE = 0.5 mv², where v is the velocity of the body.
In classical mechanics, inertial mass remains invariant, and there is no conversion between inertial mass (m) and effective mass (mᵉᶠᶠ). Effective mass is purely an energetic state, influenced by kinetic energy, which aligns with KE. The relationship between force (F) and acceleration (a) (F ∝ a) is inversely proportional to mass (m), where a∝1/m. However, changes in effective mass (mᵉᶠᶠ) are not real changes in mass but apparent changes due to the kinetic energy of the system.
For example, when a person experiences a change in weight while ascending or descending in an elevator, their actual mass (m) remains constant, but they feel heavier or lighter due to changes in effective mass caused by the acceleration of the elevator. Similarly, when a person sitting in a moving vehicle experiences external forces due to acceleration or deceleration, their actual mass remains unchanged, but their effective mass varies due to the kinetic energy of the vehicle.
Therefore, effective mass is attributed to the gain or loss of kinetic energy of massive bodies, including persons, and this kinetic energy is equivalent to effective mass.
The discussion emphasizes the compatibility of classical mechanics with relativistic transformations, particularly concerning the relationship between mass and acceleration. By incorporating the effects of kinetic energy on the effective mass of an object, classical mechanics can extend its applicability to relativistic contexts.
Furthermore, considering the broader implications of force-mass dynamics in various contexts, such as accelerometers and piezoelectric materials, demonstrates the versatility of classical mechanics in describing object behaviour under different forces and conditions, including relativistic effects.
The acknowledgment of relativistic effects on effective mass underscores the importance of considering mass-energy equivalence principles in classical elucidations of dynamics. By recognizing the contribution of kinetic energy to the overall mass of an object, classical mechanics can provide a more comprehensive understanding of object behaviour at relativistic speeds.