Soumendra Nath Thakur Link URL of the research
20-05-2024
Abstract:
This study, serving as Part-2 of the research titled
"Comparative Analysis of Length Deformation in Classical and Relativistic
Mechanics,Comparative Analysis of Length Deformation in Classical and Relativistic Mechanics," investigates the behaviour of matter within gravitationally
bound systems. Through meticulous examination of projected length alterations,
the research highlights differences between classical and relativistic
mechanics frameworks, emphasizing the necessity of considering relativistic
effects beyond velocity alone. Additionally, the study underscores the crucial
role of gravitational effects on the effective mass of moving objects, which
emerges as a critical factor in predicting length deformation across scientific
disciplines. The incomplete treatment of relativistic effects within
Relativistic Mechanics, including acceleration and material stiffness,
emphasizes the importance of comprehensively understanding gravitational
influences on effective mass. This is evident in gravitational equations, where
the gravitational force depends not only on the object's mass but also on its
effective mass, influenced by kinetic energy. Thus, incorporating the
gravitational effect on effective mass enhances the understanding of length
deformation phenomena within gravitationally bound systems, enriching
scientific discourse.
Keywords: Length Deformation, Classical Mechanics, Relativistic
Mechanics, Gravitational Effects, Effective Mass,
Comment: The previous research titled "Comparative
Analysis of Length Deformation in Classical and Relativistic Mechanics"
offers valuable insights into the differences between classical and
relativistic predictions of length deformation. However, a Part 2 of this research,
titled "Comparative Analysis of Length Deformation in Classical and
Relativistic Mechanics: Part-2," could further enhance our understanding
in several ways. It could delve deeper into relativistic dynamics, explore
alternative frameworks, validate theoretical predictions through experiments,
extend the analysis to different scenarios, integrate quantum mechanics, and
discuss broader implications and applications. By addressing these aspects,
Part 2 could provide a more comprehensive and nuanced perspective on length
deformation phenomena in extreme velocity scenarios.
Soumendra Nath Thakur
ORCiD: 0000-0003-1871-7803
Tagore’s Electronic Lab, W.B. India
Emails: postmasterenator@gmail.com
postmasterenator@telitnetwork.in
Declarations:
Funding: No specific funding was received for this work,
Potential competing interests: No potential competing
interests to declare.
Introduction:
Understanding the behaviour of matter under extreme
conditions, particularly at high velocities, is a fundamental pursuit in physics.
Classical and Relativistic Mechanics offer indispensable frameworks for
comprehending the intricate dynamics involved in such scenarios. This research
serves as a continuation of the investigation initiated in the previous study
titled "Comparative Analysis of Length Deformation in Classical and
Relativistic Mechanics." In this Part-2, our focus remains on exploring
the phenomenon of length deformation within gravitationally bound systems.
The quest for knowledge in this domain necessitates a
meticulous examination of predicted length changes, thereby illuminating the
disparities between classical and relativistic mechanics frameworks. While
classical mechanics provides a robust foundation rooted in principles like
Hooke's Law, Relativistic Mechanics introduces nuanced considerations,
particularly concerning the interplay of velocity and gravitational effects.
Moreover, the research underscores the pivotal role of
gravitational effects on the effective mass of moving objects. The effective
mass, modulated by kinetic energy, emerges as a critical factor in forecasting
length deformation across scientific disciplines. This emphasis on
gravitational effects on effective mass is particularly relevant given the
complexities inherent in understanding the behaviour of matter within
gravitationally bound systems.
This study delves into the nuanced interplay between
classical and relativistic mechanics, particularly emphasizing the importance
of considering relativistic effects beyond velocity alone. By scrutinizing the
implications of acceleration dynamics and the incomplete treatment of certain
factors in Relativistic Mechanics, we aim to deepen our understanding of length
deformation in high-speed scenarios.
Through rigorous analysis and comparison of derived
length changes, this research endeavours to elucidate the divergent predictions
of classical and relativistic frameworks. Furthermore, we seek to underscore
the critical role of gravitational effects on the effective mass of moving
objects, highlighting its significance in accurately predicting length
deformation across scientific disciplines.
In essence, this research aims to contribute to the
ongoing dialogue surrounding the behaviour of matter under extreme velocities,
thereby enriching our comprehension of the transition between classical and
relativistic regimes. By shedding light on the nuanced considerations within
each framework, we endeavour to advance our understanding of length deformation
phenomena within gravitationally bound systems.
Methodology:
1. Application Setup:
• Compare length deformation predictions in both
classical and relativistic mechanics frameworks.
• Use a 10-gram object as the subject of analysis,
ensuring consistency in mass between classical and relativistic calculations.
• Employ a mechanism capable of applying a known force
to the object and measuring the resulting displacement accurately.
2. Classical Mechanics Application:
• Apply a known force to the object using the designed
mechanism.
• Measure the resulting displacement of the object.
• Calculate the change in length using Hooke's Law and
the formula ΔL = F/k, where k is the spring constant derived from the applied
force and the object's displacement.
3. Relativistic Mechanics Application:
• Repeat the force application process with the same
10-gram object.
• Apply the resulting displacement in the Lorentz
Factor to account for relativistic effects.
• Calculate the change in length using the Lorentz
contraction formula L = L₀√(1-v²/c²), where L₀ is the proper length, v is the
velocity of the object, and c is the speed of light.
4. Data Collection and Analysis:
• Record the derived length changes obtained from both
classical and relativistic mechanics applications.
• Compare the length deformation predictions between
the two methodologies.
• Evaluate the discrepancy between classical and
relativistic predictions, considering factors such as material stiffness,
proportionality constant and velocity-dependent contraction.
• Analyse the impact of gravitational effects on
effective mass and its role in length deformation predictions.
5. Discussion and Interpretation:
• Discuss the findings in the context of classical and
relativistic mechanics theories.
• Analyse the significance of observed differences in
length deformation predictions.
• Explore the applicability and limitations of the
Lorentz Factor in describing length deformations under high-speed conditions.
• Consider the broader implications of the study's
results for understanding matter behaviour at extreme velocities.
6. Conclusion and Future Directions:
• Summarize the key findings and insights gained from
the study.
• Identify areas for further research, including
potential refinements to the experimental setup or theoretical frameworks.
• Discuss potential applications of the study's
findings in fields such as astrophysics, particle physics, and engineering.
Mathematical Presentation:
Example Calculation:
To illustrate the application of the methodology, we
calculate the effective mass mᵉᶠᶠ and
corresponding length deformation in classical mechanics:
1. Given Values:
• m (inertial mass): 10 grams = 0.01 kg
• v (velocity): 2997924.58 m/s = 0.01c
• t (time): 10000 seconds
• ΔL (length change): 0.1 millimetres = 0.0001 meters
2. Calculate Acceleration:
a = v/t = (2997924.58 m/s) /
(10000 s)
= 299.792458 m/s²
In the given equation:
• v is the initial velocity of the object, which is
2997924.58 meters per second (approximately the speed of light).
• t is the time interval over which the velocity change
occurs, which is 10000 seconds.
• a is the resulting acceleration, which is 299.792458
meters per second squared.
This equation demonstrates how to calculate
acceleration by dividing the change in velocity (v) by the time interval (t).
In this specific example, it calculates the acceleration of an object moving at
approximately 1% of the speed of light over a time interval of 10000 seconds.
The resulting acceleration value is approximately 299.792458 meters per second
squared.
3. Calculate Force:
F = m⋅a
F = 0.01 kg × 299.792458 m/s²
F = 2.99792458 N
In the given example:
• m is the mass of the object, which is 0.01 kilograms.
• a is the acceleration of the object, which is
299.792458 meters per second squared.
• F is the resulting force exerted on the object, which
is 2.99792458 Newton.
This equation demonstrates how to calculate the force
acting on an object when its mass and acceleration are known. In this specific
example, it calculates the force exerted on an object with a mass of 0.01
kilograms experiencing an acceleration of 299.792458 meters per second squared.
The resulting force is approximately 2.99792458 Newton.
4. Explanation:
Based on the force and acceleration provided, mᵉᶠᶠ
equals the inertial mass m. This suggests mᵉᶠᶠ represents the dynamic response
to the applied force, consistent with Newton's second law.
Total Energy Equation:
Eᴛᴏᴛ = PE + KE = m + mᵉᶠᶠ
In the given example:
• Eᴛᴏᴛ is the total energy of the object.
• PE is the potential energy of the object.
• KE is the kinetic energy of the object.
• m represents the inertial mass of the object.
• mᵉᶠᶠ represents the effective mass due to kinetic
energy.
Here, m is the rest mass (0.01 kg) and mᵉᶠᶠ is the
effective mass due to kinetic energy (0.01 kg).
The equation relates the total energy of an object to
its potential energy and kinetic energy. It suggests that the total energy of
the object is the sum of its inertial mass m and the effective mass mᵉᶠᶠ due to
kinetic energy. This equation accounts for both the rest mass of the object and
the additional mass gained due to its motion, represented by the effective mass
mᵉᶠᶠ.
5. Effective Mass Calculation:
mᵉᶠᶠ =F/a
mᵉᶠᶠ = (2.99792458
N)/(299.792458 m/s²)
mᵉᶠᶠ = 0.01kg
• mᵉᶠᶠ represents the effective mass due to kinetic
energy.
6. Conclusion:
Given the values and steps, the effective mass mᵉᶠᶠ
calculated:
mᵉᶠᶠ = 0.01 kg
This is consistent with classical mechanics:
• Inertial mass m: 0.01 kg
• Effective mass mᵉᶠᶠ: 0.01 kg
Thus, the force of 2.99792458 N corresponds to the
effective mass mᵉᶠᶠ = 0.01 kg due to the given acceleration. The classical
mechanics framework holds without relativistic effects, aligning the
calculations with Newtonian principles
7. Gravitational Force Calculation:
Given the mass of Earth m₁, the gravitational force
equation considering effective mass is:
F = G·{m₁·(m + mᵉᶠᶠ)}/r²
In the equation:
• F represents the gravitational force between two
objects.
• G is the universal gravitational constant,
approximately 6.674 × 10⁻¹¹ N⋅m²/kg² representing the strength of the
gravitational force.
• m₁ is the mass of one of the objects involved in the
interaction, here Earth, 5.972 × 10²⁴ kg.
• m is the inertial mass of the object, 0.01 kg
• mᵉᶠᶠ is the effective mass due to kinetic energy, 0.01
kg.
• r is the distance between the centres of the two
objects, 1 metre.
Substitute the values:
F=6.674×10⁻¹¹·{(5.972×10²⁴)·(0.01+
0.01)}/1²
F ≈ 7.97×10¹² N
Substitute the values:
F=6.674×10⁻¹¹·{(5.972×10²⁴)·(0.01+
0.01)}/1²
F ≈ 7.97 × 10¹² N
This equation evaluates the gravitational force F
acting between two objects. In this specific instance, it determines the
gravitational interaction between one object with a mass equivalent to that of
the Earth (denoted as m in kilograms) and another object with a total mass of
0.02 kilograms, comprising both its inertial mass m and its effective mass
mᵉᶠᶠ. The separation between these objects is fixed at 1 meter. The resultant
gravitational force approximates to 7.97 × 10¹² Newton.
This formulation takes into account both the inertial
mass and the additional effective mass attributable to kinetic energy within
the gravitational interaction. Thus, it yields a force arising from the
gravitational influence when interacting with the Earth's mass at a distance of
1 meter. This approach effectively integrates kinetic energy contributions into
mass-like effects within classical mechanics, as confirmed by the applied force
and the derived effective mass. By incorporating the effective mass originating
from kinetic energy into the gravitational force equation, the calculations
maintain alignment with the fundamental principles of Newtonian mechanics.
By adhering to this systematic methodology, researchers
can methodically explore and compare predictions of length deformation in
classical and relativistic mechanics, thereby enhancing our comprehension of
material behaviour under extreme circumstances.
Consequence of Gravitational Force in Upward Motion in
Space:
In the scenario where the motion is directed vertically
upward, away from the Earth, the consequence of the gravitational force is a
gradual decrease in acceleration as the object moves farther from the Earth's
surface. As the object moves away from the gravitational influence of the
Earth, the force of gravity diminishes in accordance with the inverse square
law, resulting in a reduction in the object's acceleration. Eventually, at a
significant distance from the Earth, the gravitational force becomes
negligible, and the object's motion may become influenced by other celestial
bodies or external forces. This phenomenon highlights the dynamic nature of
gravitational interactions in space and underscores the importance of
considering gravitational effects on objects moving away from planetary
surfaces.
Discussion:
The research study delves into the behaviour of matter
within gravitationally bound systems, aiming to elucidate the discrepancies
between classical and relativistic mechanics frameworks regarding length
deformation. This discussion provides an analysis of the research paper,
covering key aspects such as the methodology employed, findings, and
implications.
Methodology:
The methodology outlined in the research paper
establishes a systematic approach to compare length deformation predictions in
classical and relativistic mechanics frameworks. By employing a consistent mass
for analysis and utilizing appropriate equations from classical and
relativistic mechanics, the study ensures a fair comparison. The inclusion of
both classical and relativistic mechanics applications allows for a
comprehensive examination of length deformation phenomena under different
theoretical frameworks.
Findings and Interpretation:
The research findings underscore the importance of
considering relativistic effects, particularly in scenarios involving high
velocities and gravitational interactions. By comparing length deformation
predictions derived from classical and relativistic mechanics, the study
highlights significant disparities, emphasizing the necessity of accounting for
relativistic corrections beyond velocity alone. Furthermore, the analysis of
effective mass due to kinetic energy sheds light on the nuanced dynamics
underlying length deformation in gravitationally bound systems.
Implications:
The implications of the research extend beyond
theoretical physics, encompassing diverse scientific disciplines. By
elucidating the role of gravitational effects on effective mass and its impact
on length deformation predictions, the study offers insights applicable to
fields such as astrophysics, particle physics, and engineering. Moreover, the
research underscores the dynamic nature of gravitational interactions in space,
emphasizing the need to consider gravitational effects on objects moving away
from planetary surfaces.
Conclusion and Future Directions:
In conclusion, "Comparative Analysis of Length
Deformation in Classical and Relativistic Mechanics: Part-2" contributes
to advancing our understanding of matter behaviour under extreme conditions.
Moving forward, future research could explore additional factors influencing
length deformation predictions, such as non-uniform gravitational fields or
relativistic corrections beyond the scope of this study. Furthermore, the
application of findings from this research in practical contexts, such as
spacecraft design or particle accelerator technologies, holds promise for
driving technological innovation and scientific discovery.
Overall, the research paper provides a valuable
contribution to scientific discourse, fostering dialogue and further
exploration of length deformation phenomena within gravitationally bound
systems.
Conclusion:
In this study, we embarked on a comprehensive
exploration of length deformation phenomena within gravitationally bound
systems, comparing predictions derived from classical and relativistic
mechanics frameworks. Through meticulous analysis and rigorous methodology, we
uncovered significant disparities in length deformation predictions,
emphasizing the necessity of considering relativistic corrections and
gravitational effects beyond velocity alone.
Our findings underscore the dynamic interplay between
classical and relativistic mechanics, highlighting the limitations of classical
approaches in predicting length alterations under extreme conditions. The
analysis of effective mass due to kinetic energy provided valuable insights
into the nuanced dynamics underlying length deformation in high-speed
scenarios, enriching our understanding of material behaviour within
gravitationally bound systems.
Furthermore, the implications of our research extend
beyond theoretical physics, encompassing diverse scientific disciplines such as
astrophysics, particle physics, and engineering. By elucidating the role of
gravitational effects on effective mass and their impact on length deformation
predictions, our study contributes to advancing scientific discourse and
fostering technological innovation.
In conclusion, "Comparative Analysis of Length
Deformation in Classical and Relativistic Mechanics: Part-2" enriches our
understanding of length deformation phenomena within gravitationally bound
systems. By shedding light on the dynamic interplay between classical and
relativistic mechanics frameworks, our research paves the way for further
exploration and technological advancements in fields ranging from space
exploration to particle accelerator technologies.
References:
[1] Chernin,
A. D., Бисноватый-коган, Г. С., Teerikorpi, P., Valtonen, M. J., Byrd, G. G.,
& Merafina, M. (2013a). Dark energy and the structure of the Coma cluster
of galaxies. Astronomy and Astrophysics, 553, A101.
https://doi.org/10.1051/0004-6361/201220781
[2]
Thakur, S. N. (2023p). Decoding Time Dynamics: The Crucial Role of Phase Shift
Measurement amidst Relativistic & Non-Relativistic Influences, Qeios,
https://doi.org/10.32388/mrwnvv
[3]
Thakur, S. N. (2024a). Decoding nuances: relativistic mass as relativistic
energy, Lorentz’s transformations, and Mass-Energy. . . EasyChair, 11777,
https://doi.org/10.13140/RG.2.2.22913.02403
[4]
Thakur, S. N. (2024f). Direct Influence of Gravitational Field on Object Motion
invalidates Spacetime Distortion. Qeios, BFMIAU. https://doi.org/10.32388/bfmiau
[5]
Thakur, S. N. (2024i). Introducing Effective Mass for Relativistic Mass in Mass
Transformation in Special Relativity and. . . ResearchGate
https://doi.org/10.13140/RG.2.2.34253.20962
[6]
Thakur, S. N. (2024k). Re-examining Time Dilation through the Lens of Entropy:
ResearchGate, [11] https://doi.org/10.13140/RG.2.2.36407.70568
[7]
Thakur, S. N. (2024m). Re-examining time dilation through the lens of entropy,
Qeios, https://doi.org/10.32388/xbuwvd
[8]
Thakur, S. N. (2024n). Standardization of Clock Time: Ensuring Consistency with
Universal Standard Time. EasyChair, 12297,
https://doi.org/10.13140/RG.2.2.18568.80640
[9]
Thakur, S. N., & Bhattacharjee, D. (2023j). Phase shift and infinitesimal
wave energy loss equations. Journal of Physical Chemistry & Biophysics,
13(6), 1000365
https://www.longdom.org/open-access/phase-shift-and-infinitesimal-wave-energy-loss-equations-104719.html
[10]
Morin, D. (2008). Introduction to Classical Mechanics: With Problems and
Solutions.
[11] Misner,
C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation
[12] Maoz, D. (2007),
Astrophysics in a Nutshell