March 31, 2025
A fundamental contradiction arises when considering the relativistic interpretation of spacetime curvature alongside the widely accepted notion of cosmic expansion. In general relativity, gravity is not treated as a force but as the manifestation of spacetime curvature caused by massive bodies. However, if spacetime itself is expanding—stretching at cosmological scales—then the very fabric that supposedly curves under gravitational influence is in a state of dynamic transformation.
This presents an unavoidable paradox: how can spacetime maintain a stable and well-defined curvature around massive bodies if it is simultaneously undergoing large-scale expansion? If spacetime curvature is a tangible, physical distortion as relativity claims, then it should be subject to deformation or attenuation as the fabric of spacetime stretches. This would imply that local gravitational wells formed by massive bodies should either weaken or morph unpredictably over time. Yet, no such effects are observed. Instead, gravitational interactions remain stable and consistent over cosmic timescales, a characteristic that aligns more with a classical gravitational field than a malleable spacetime fabric.
Moreover, if the curvature of spacetime were truly a fundamental and rigid aspect of general relativity, then the expansion of spacetime should also stretch or distort these curvatures in a manner that would be empirically measurable. However, relativists make no such allowances; they conveniently separate local spacetime curvature (due to gravity) from large-scale cosmic expansion, even though both supposedly affect the same underlying spacetime. This selective treatment of relativistic curvature exposes a significant inconsistency: spacetime curvature is treated as physically real when describing gravity, yet as an abstract mathematical construct when dealing with cosmic expansion.
In contrast, classical mechanics and ECM provide a more consistent framework where gravity operates through a force-based field that is not inherently tied to the expansion of space itself. This eliminates the paradox of having a dynamically stretching medium that simultaneously holds stable curvatures, reinforcing the idea that the relativistic model of spacetime curvature is an opportunistic construct rather than a physically coherent reality.
No comments:
Post a Comment